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ABSTRACT
This paper approaches the problem of volumetric mesh

creation from scattered prior data for biomechanical simu-
lations using the Finite Element Method. In order to cre-
ate high quality meshes, we investigate the use of implicit
surface reconstruction methods, together with a novel “bit-
ing” meshing algorithm. The proposed method is fast, cre-
ates good quality meshes, and works in any dimension, even
for complex topologies.

1. INTRODUCTION

The use of patient-specific models is becoming increasingly
popular in medical image analysis. In particular, shape mod-
els of patients’ organs are particularly useful, and can be used
either for simulation or medical image analysis. Such models
usually rely on a biomechanical model. A popular approach
for simulating the physics is to use the finite element method
(FEM). However, the FEM requires the discretization of the
domain into a mesh. Moreover, mesh regularity is critical
to the accuracy and stability of the method. The creation of
such a 3D mesh can be a tedious task, especially for complex
geometries and/or topologies.

In this paper we propose to use an implicit surface re-
construction method (in the 3D case, a Multilevel Partition
of Unity [1]) combined with an original “biting” algorithm in
order to solve this problem. Implicit surfaces naturally han-
dle the scattered nature of the input data (often composed of
manually created priors). The meshing algorithm we propose
works well with the implicit surface approach, is fast, simple
to implement and generates meshes of good quality.

The paper is organized as follows: In section 2 we de-
scribe the deformable model application that motivated our
approach. Section 3 discuses previous work in this domain,
and in section 4 we describe our proposed method in detail.
Finally, we show some sample results in section 5.

2. BACKGROUND: ELASTIC MODEL

A recurring problem in medical image analysis is the auto-
mated extraction of structure shape from image data, also
known as image segmentation. In order to ease the contour
extraction process, one possibility is to use an a priori model
of the object to be extracted that will be deformed iteratively
to fit the image content. This approach is commonly known
in image processing as deformable models.

In this paper we focus on a model designed for the si-
multaneous extraction of both the endocardial and epicardial
surfaces in cardiac magnetic resonance images [2]. The con-
cept, named Deformable Elastic Template, is a combination
of :

• A topological and geometric model of the object to be
segmented. In this context, this a priori model is a bi-
cavity geometrical mesh that results from the manual seg-
mentation of cardiac ventricles in a reference data set.

• A constitutive equation (elasticity) defining its behavior
under applied external image forces that push the model’s
interfaces towards the image edges.

The equilibrium of the model is obtained through the mini-
mization of the following global energy functional :

E = Eelastic +Edata

where Eelastic represents the deformation energy of the model
and Edata is the energy due to the external image forces. Both
terms depend on two continuous functions: the displacement
u, and a force field f .

2.1 Discretization
These energy terms can be approximated by discretizing the
underlying functions. To perform the discretization, we use
the finite element method (FEM): the elastic domain Ω is
approximated by a polyhedron divided into tetrahedral el-
ements. The displacement and forces are approximated to
linear functions on these elements.

Under this approximation, the minimum of the energy
must satisfy the following equation:

KU = F
where K is the stiffness matrix, corresponding to the re-
sponse of the elastic material, and U and F are respectively
the displacement and force vectors. This equation is a sparse
linear system and can be solved using standard numerical
methods.

2.2 Mesh quality
Since the precision of the approximation is directly related
to the size of elements, in order to have the same precision
everywhere in the domain we need to have uniformly-sized
elements. Moreover, the conditioning of the matrix K de-
pends on the aspect ratio of the tetrahedra. The quality of
the mesh is thus a very important factor for the precision and
the robustness of finite element methods.

3. PREVIOUS WORK

While elastic models have been quite popular in the field
of cardiac medical image analysis, the construction of the
meshed model has not been discussed a lot. Authors usu-
ally rely on existing code [2, 3] or very simple ad-hoc meth-
ods [4]. However, these methods are usually sub-optimal for
a number of reasons:
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• They require a surface mesh to be created first, and are
highly dependent on the quality of the surface mesh.

• They lack flexibility and require a quite long tool chain.
• They usually have a non-uniform sizing of elements,

smaller near the surface and bigger in the interior. While
this is desirable for some applications, it can be detri-
mental in the context of deformable meshes, where sim-
ulation accuracy is important everywhere.
In particular, the creation of a surface mesh from sparsely

sampled contours is non-trivial. Indeed surface mesh recon-
struction methods require some knowledge about the topol-
ogy of the surface, or some condition on the sampling. This
case is frequently encountered when considering 3D shape
reconstruction from medical imaging data.

A good review of volumetric meshing approaches can be
found in [5]. “Biting” approaches are considered in [6] in
the context of surface meshing. [7] explores the context for
2D domain meshing, and presents some interesting theoret-
ical results. In this paper, we propose to use a similar ap-
proach to mesh the inner part of a 3D implicitly defined ob-
ject, and obviously our approach can be easily extended to
n-dimensional meshing.

4. PROPOSAL

Instead of reconstructing a surface mesh from given samples,
we first reconstruct an implicit surface, which handles lim-
itations described in the previous section, and offers some
interesting properties:
• the reconstructed surface is guaranteed to be manifold,
• an easy and efficient classification test to know whether

one point is inside, outside or on the surface.
Thus to create the volumetric mesh from sparse samples,

we first reconstruct an implicit function f (section 4.1) which
provides continuous information about interior and border of
the Domain Ω. Then to mesh Ω, we use a simple yet ef-
ficient algorithm to place mesh nodes, inspired by methods
described in [7] and [6] (section 4.2.1), and compute a Delau-
nay triangulation(section 4.2.2) to get an initial volumetric
mesh which could be further improved by relaxation meth-
ods.

The resulting meshes are very regular, with a quasi-
uniform sampling of control points. They are very well
suited for solving the finite-element problems required for
elastic modeling.

4.1 Implicit Function Reconstruction

An implicit function f representing a given object is defined
such that its zero level set represents the shape, i.e. one point
p is on the surface if f (p) = 0, or inside the object if f (p) >
0, else outside.

Implicit function reconstruction has been intensively
studied over the last decade [8, 9, 1]. Among all these meth-
ods, we decide to use a Multilevel Partition of Unity method
[1] which allows to reconstruct an implicit function with a
given reconstruction error bound and can represent features
and high order corners.

It is important to mention that our proposed method can
work with any implicit surface reconstruction method, as
long as they provide a well defined implicit function f on
the whole domain of interest Ω.

4.2 Mesh Creation
4.2.1 Node Selection

The first and most important part of mesh creation is the se-
lection of the node points. The approach we propose is based
on the extension of the “biting” method described in [7] to
k dimensions. Our implementation is based on a grid dis-
cretization.

Consider a given implicit function f , and a given d di-
mensional grid I on which f is sampled. Depending on the
implicit function value at its corresponding location p, one
grid node n is labeled, by the LABELELEMENTS procedure,
as ALIVE (if f (p) > 0), or DEAD.

We select one node u from the border between ALIVE
and DEAD labeled elements, via the SELECTNODE proce-
dure. The corresponding location p of this node is added to
the center set C . Then, all ALIVE nodes n such that the Eu-
clidean distance to u is below R are labeled as DEAD by the
KILLNODES procedure. These last processes are iteratively
repeated until there are no more ALIVE nodes. The algo-
rithm is summarized in Algorithm 1. An illustration of the
algorithm is presented in Figure 1.

Algorithm 1 Biting Algorithm
1: procedure COMPUTEMESHNODES( f , R, I)
2: X ← /0
3: ALIVE, DEAD← LABELELEMENTS( f , I)
4: repeat
5: u←SELECTNODE(ALIVE, DEAD)
6: X ← X ∪{u}
7: KILLNODES(u, R, ALIVE, DEAD)
8: until Card(ALIVE) = 0
9: end procedure

The two main parameters of this step are the size of the
grid d, and the radius R. The radius R is the minimum dis-
tance between nodes, and is very close to the average dis-
tance between adjacent nodes (in the Delaunay sense). It is
thus related to the precision of the FEM approximation, and
should therefore be selected considering the desired simula-
tion accuracy. The size of the grid d determines how closely
the reconstructed mesh’s geometry will match the original
implicit geometry. It should therefore be as high as possi-
ble. The limiting factor is available memory, since memory
use increases with dk where k is the considered dimension.
It should however be noted that each point of the grid only
requires one bit of memory.

4.2.2 Triangulation

A Delaunay Triangulation is a triangulation that maximizes
the minimum internal angles of tetrahedra. Therefore, for a
given set of points P , Delaunay Triangulation provides the
best aspect ratio and is very popular for FEM applications.

The Voronoi cell of the site p ∈ P is given as Vp ={
x ∈ R3 : ∀ q ∈P−{p}, ‖x− p‖6 ‖x−q‖}. The sets Vp

are convex polyhedra. Faces shared by two Voronoi cells are
called Voronoi faces, and edges shared by three Voronoi cells
are called Voronoi edges. The points shared by four or more
Voronoi cells are called Voronoi vertices. The Voronoi dia-
gram VP of P is the collection of all Voronoi cells, faces,
edges and vertices.
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Figure 1: Illustration of the algorithm on a simple 2D prob-
lem: the top four figures show nodes labeled as ALIVE, with
the corresponding mesh node set X on the bottom four fig-
ures, at the two first iteration steps, one intermediary itera-
tion, and upon termination of the algorithm.

(a) (b) (c)

Figure 2: Node selection (a), Delaunay triangulation (b), af-
ter spurious cell removal (c).

The Delaunay Triangulation DP of a set of points P is
dual to the Voronoi diagram VP . The convex hull of four
or more points in P defines a Delaunay cell if the inter-
section of the corresponding Voronoi cells is not empty and
there exists no superset of points in P with the same prop-
erty. Analogously, the convex hull of 1 6 k 6 3 points de-
fine a (k− 1)-dimensional Delaunay face if the intersection
of their corresponding Voronoi cells is not empty. A 0-, 1-,
and 2-dimensional Delaunay face is also called a Delaunay
vertex, Delaunay edge, Delaunay triangle respectively. The
collection of Delaunay cells and their faces defines a decom-
position of the convex hull of all points in P . This decompo-
sition is a triangulation where the Delaunay cells are tetrae-
dra if the points are not aligned.

To compute the Delaunay triangulation of a given point
set, several algorithms are available. Here, we used the algo-
rithm proposed in the QHULL library [10].

The resulting mesh contains tetrahedra that are outside of
the domain and that should thus be removed. Following [5],
one tetrahedron is labeled as outside if its circumcenter c is
outside the domain, i.e. f (c) < 0, and if the ratio between the
distance of the circumcenter to the surface and the radius of
the circumsphere is inferior to a certain threshold (see Fig.2).
In our experiments, we used 0.4 as the threshold, which is the
value used in [5].

In practice, this criterion is evaluated using the follow-
ing approximation of the Euclidean distance from c to the
implicit surface ∂Ω [11] :

d(c,∂Ω)≈ | f (c)|
‖∇ f (c)‖

5. RESULTS

The method was evaluated on both synthetic shapes and real
heart data. Figure 4 shows the results of the method on a
synthetic die shape. The resulting mesh has approximately
10,000 cells. Note that the tetrahedra have a good aspect
ratio and are uniformly sized. The whole process took about
5 seconds on a Pentium M 2.2GHz workstation, without any
particular effort to optimize the code.

Figure 3 shows the results on a real dataset composed of
the shape of the left and right ventricle of a healthy volunteer.
The creation of a high resolution heart mesh took about 5
minutes, in the same conditions as above. The final mesh
is comprised of approximately 136,000 cells. The resulting
mesh can then deformed using the finite element method to
match the heart of a patient. This scheme can be used, for
example, for image segmentation.
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(a)

(b)

(c)

(d)

Figure 3: Original scattered point set (lower portion of the
heart) (a), Reconstructed volumetric mesh (b), Cut along the
short axis (c), Cut along the long axis (d)

(a) (b)

Figure 4: Exterior mesh of a synthetic die shape (a), Inside
view (b)

(a)

(b)

Figure 5: Radius ratio histograms for (a) synthetic and
(b) heart meshes
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In order to quantitatively assess the quality of elements, a
quality criterion Q was computed for each tetrahedron in the
generated mesh. We used the ratio between the radius of the
insphere and the radius of the circumsphere (multiplied by a
factor of 3 for normalization). This criterion has been shown
in the past to be a good measure for any kind of degener-
acy [5], and varies between 0 (worst) and 1 (perfect mesh).
For the synthetic shape mesh, the mean of Q was of 0.80,
with a standard deviation of 0.15. For the heart mesh, the
mean was of 0.79 with a standard deviation of 0.16. In com-
parison, [5] obtains average values between 0.86 and 0.88,
with a much more complex and computationally-intensive
method. Figure 5 shows the radius ratio histograms for both
meshes. One significant drawback of our method is that a
significant number of slivers remain: the radius ratio of the
worst element is very low. This problem could be addressed
by adding a sliver removal step, such as the one described
in [12], which is proven to eliminate all slivers provided the
original points are well spaced.

6. DISCUSSION

The proposed method was shown to generate quality meshes
well suited for finite element analysis, using implicit sur-
face reconstruction methods and a “biting“ algorithm. The
remaining slivers could prove to be a problem; however, ac-
cording to Cheng [12], they can be completely removed. One
advantage of the proposed method is that it can work for any
dimension and any domain topology, although in this paper
we only showed results on simple topologies in 3D, which
are sufficient for our application.

One improvement could be to add a relaxation step after
the initial mesh creation. Indeed, the biting scheme ensures
good quality elements almost everywhere in the domain, but
in a few points adjacent nodes can be more distant than the
radius of the biting element. A relaxation scheme would cer-
tainly improve the mesh at these locations.

7. CONCLUSION

We have proposed a method to create a volumetric mesh from
scattered data points using a implicit surface approach, fo-
cusing on a deformable model application. The proposed
method creates meshes of good quality and well suited for
the envisioned application. It is also very generic and can
work on complex topologies in any dimension.

The resulting mesh can be used for finite-element analy-
sis, and is particularly well suited for methods which imply
deforming the mesh. In the future we hope to further im-
prove the method by adding a sliver removal method and a
relaxation step.
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