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Grid Workflow Efficient Enactment for Data Intensive Applications

Summary : This document presents different aspects of data management in the context of 
workflow enactment. It covers both the modelization aspect and the algorithms and techniques 
used by workflow enactors.
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1. Introduction

The representation of  a  data  computing  application  as  a  workflow necessarily 
contains a description of the data provided as input and produced as output for each task 
in  the  workflow.  This  language  must  therefore  provide  a  data  model that  represents 
efficiently  all  kinds  of  data  a  workflow  task  may  use  as  input  or  output.  The 
expressiveness of this data model is a key element of the workflow language as it gives 
exactly what is the level of detail available to the workflow enactment engine about the 
content  and structure of  the  data  processed.  Using  these  details  allows the  engine to 
optimize the workflow execution using appropriate data management techniques.

Within the context of data-intensive scientific workflows and computational grids, 
these  aspects  of  workflow language  and  workflow enactment  engine  are  particularly 
important as they have a great impact on the  performance of the application due to the 
large number of tasks. The execution of the workflow being distributed over a grid and 
parallelized,  workflow data has to be transferred over the network and very often the 
same data  has  to  be copied  simultaneously  on many hosts.  If  these transfers  are  not 
optimized  by  a  data  management  system then  they  will  be  scheduled  independently 
which will generally result in bottlenecks and high latency for workflow tasks.

In the first part of this document we will introduce the data model that is used in 
the GWENDIA workflow language.  Then we will  describe the different  solutions we 
have proposed to the problem of data management when designing and implementing the 
grid workflow enactement engines DIET and MOTEUR, considering the grid execution 
environment constraints.

2. Workflow data model in the GWENDIA language
This part of the document describes the model used for workflow enactement in 

the GWENDIA language and introduces some aspects of data management involved in 
this process of worklow enactement.

2.1. Overview of the workflow model

The  GWENDIA workflow  language  describes  a  graph  of  “workflow  nodes” 
where the vertices can belong to one of the following categories:

● computing  “activities”:  a  node  describes  a  service  that  can  be  executed  on  a 
computing platform (e.g. a grid or cloud). The properties of this node include the data 
input and output ports with the type of data they receive or send.

● workflow control structures: a node controls the way other workflow nodes are 
used by the workflow engine. For example a conditional structure (if/then/else) can be 
used to trigger different activities depending on the value of an expression.  These 
nodes also contain data input/output ports like activities.

● data “sources” and “sinks”: these nodes produce data items (respectively  receive 
them). A data source can be implemented as a file or as a database query. A data sink 
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can be implemented as a terminal output or as a database insert. These nodes usually 
define one output port (respectively one input port).

The edges of the graph are oriented, one to one and represent data flows between 
workflow nodes. More precisely, they interconnects ports of the workflow nodes together 
(one edge or “link” connects an output port to an input port).

Figure 1. Workflow example

2.2. Role of the data model in workflow enactement

The  GWENDIA workflow  language  adopts  a  “data-driven”  approach which 
means  that  the  data  model  determines  the  execution  model  of  the  workflow.  This 
approach is different from control-driven workflow languages that use control structures 
that  are independent  from the data model to determine the execution schedule of the 
workflow. 

This  approach consists  in  using  the  characteristics  of  the  data  flows  between 
workflow nodes to determine how the workflow is “instanciated” i.e. how the workflow 
engine generates a graph which has tasks as vertices and data dependencies (i.e. data “A” 
is produced by one task and used by another one) as edges. This graph can be generated 
dynamically and executed simultaneously, or the execution can be handled by a different 
workflow engine that takes this graph of tasks as input (generally called a “DAG” for 
“directed acyclic graph”). This engine manages task scheduling and execution.

2.3. Goals

One  of  the  objectives  of  the  data  model  used  for  the  GWENDIA workflow 
language comes from the overall  motivation of this language which is to  simplify  the 
process of creating a data-intensive workflow from the user point of view. This explains 
the choice for a simple structure for the data model and a relatively intuitive description 
of data flows within the workflow.

The  second  objective  is  to  provide  enough  flexibility  and dynamicity to  data 
management in order to have an efficient way to execute the workflow. The main focus 
concerning data management is to allow data parallelism with an optimized replication of 
data.

2.4. Data model overview

To provide  an  expressive  data  model  for  data  parallel  applications,  arrays  are 
considered as first class structures in the GWENDIA language. Data items may be scalar 
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values (with a given type τ) or arrays of values. An Array is an homogeneous and ordered 
collection of data items. Each data item is either a scalar of type τ or an Array. An array 
may include any level of nested array data. This structure is therefore defined by its scalar  
type τ and the nesting level of the Array that is the number of nesting levels the structure 
contains (for example an Array containing Arrays of atomic values is an Array of depth 
2). By extension, a scalar value is a particular kind of array with nesting level 0.

The atomic type τ can be either a scalar type (integer, string, float, ...), a structured  
type (e.g. a matrix of scalars) or a file reference. A data of type τ is from the workflow 
engine  perspective  an  indivisible  entity  which  can  be  only  initialized,  copied  and 
transferred.

Conversely, an Array is a dynamical structure that contains elements which can be 
addressed independently by the workflow engine, i.e. each element (either an atomic one 
or a nested one) can be individually initialized, copied and transferred.

Although the atomic type and the depth of an Array are part of the description and 
must therefore be defined in the workflow, the structure is flexible in size as the number 
of  items  at  each  level  of  the  Array structure  can vary  dynamically  during  workflow 
execution  or  accross  different  executions  of  the  same  workflow.  However  when  the 
number of items in an Array is known statically i.e. when it does not depend on workflow 
inputs,  it  may  be  useful  to  provide  this  information  in  the  workflow  to  allow  the 
workflow engine to optimize task scheduling.

2.5. Array manipulation during workflow execution

The GWENDIA workflow language uses the data  model  defined above as the 
basis to instanciate the workflow. The instanciation is the process used for generating 
actual service calls to the grid from the combination of the workflow description (written 
using the GWENDIA language) and an input data set. Each service call or “task” uses 
some input data and produces some output data which is described using the data model. 
The role of the workflow engine is to « glue » all the service calls together through re-use 
of output data as input for another service call.

The data model of the GWENDIA workflow language has been designed (cf §2.3) 
to allow data parallelism in the typical case of a data  A which is an  Array containing 
many data  items that  can be processed  in  parallel  by different  instances  of the same 
service. Therefore the workflow engine is able to provide a reference to a given element 
of  A as input for a service call. The objective is to avoid transferring the whole data  A 
when only one element of the Array is to be used by the service.
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Figure 2. Access to one element of a data Array

Another typical case of data manipulation is the data merge. It is also related to 
data parallelism but is used when a single service call requires all the results of different 
instances  of another  service.  Here the workflow engine is  able to  build a  new Array 
containing all the results as its elements, and provide the reference of this Array as input 
to the service call. The objective is here to avoid transferring all the results to a central 
location before calling the service to avoid doubling the cost  of communications and 
creating a network bottleneck.

Figure 3. Merge of two data items in an Array

Due to conditional control structures (if/then/else) some data items contained in a 
given Array may be processed or not depending on their properties. This results in the 
creation of « void » data items that are elements of the Array produced as output of the 
workflow.  These  elements  do  not  refer  to  actual  data  but  they  must  be  included  as 
elements of the resulting Array because of the ordering and indexing of other elements. 
The  GWENDIA  workflow  language  provides  constructs  (« filter »  and  « merge » 
operators) used to facilitate the removal of these « void » elements from the result. This 
implies a complete re-indexing of the resulting Array or the combination of elements of 
two different Arrays.

2.6. Workflow engine architecture

The following proposed architecture for the workflow engine identifies the main 
components of the workflow engine and tries to group the main dependencies between 
these components. 
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Figure 4. Architecture for GWENDIA language enactement

3. Optimization  of  data  transfers  by  the  workflow 
manager

For scalability reasons, the workflow manager should only manipulate a limited size 
data  sets. Large experiments will  cause large amounts  of data items to be considered 
(possibly  millions)  and  the  manager  should  not  saturate  the  memory  of  the  engine 
running host nor become a bottleneck of the overall computation plan execution due to 
excessive data transfers centralized through a single host. For this purpose, our workflow 
engines are only manipulating limited size primitive data types (integers, floats, strings...) 
or references to files. File contents are never seen nor transferred through the hosting 
computer.

Files  eventually  need  to  be  transferred towards  the  computing  nodes  though.  The 
amount of data involved in application files transfer by far dominate the amount of data 
manipulated on the distributed platform during the workflow execution. Since data items 
and files might be shared between a various number of computing tasks generated by the 
workflow enactor, file transfer optimization is likely to have a significant impact on the 
overall workflow execution performance.

Data  transfers  and  the  opportunity  for  data  transfer  optimization  and  scheduling 
depend  to  a  large  extent  on  the  underlying  grid  middleware  capability.  The  DIET 
middleware for instance operates a grid of pre-deployed services, persistent on the host 
they were initially allocated on, which can implement data file persistency and peer-to-
peer data transfers. This capability is exploited in the DIET DAGDA optimizer described 
below.  Conversely,  the  gLite  middleware  operates  a  batch-oriented  infrastructure  on 
which anonymous computing resources are allocated on the fly, independently for each 
task,  and freed as soon as the allocated computation completes. In this framework, the 
workflow  manager  has  to  ensure  data  persistence  at  the  upper  level.  These  two 
approaches and their connection to the workflow managers are discussed below.
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3.1. Data management in the DIET grid middleware

DAGDA (Data Arrangement for the Grid and Distributed Applications [1]) is the data 
manager for the DIET middleware which allows data explicit or implicit replications and 
advanced data management on the grid. 

DAGDA provides the following data management features:

• Distributed data persistency
• Container management
• Explicit or implicit data replications.
• File sharing between the nodes which can access to the same disk partition.
• High level configuration about the memory and disk space DIET should use 
for the data storage and transfers, with choice of a data replacement algorithm.

3.1.1. Distributed data persistency
The DAGDA system is a distributed data storage system on the grid. Its interface 

is accessible from any DIET agent and allows the agent to store or find data on the Grid 
without necessarily specifying where (i.e. on which host) the data should be stored or 
found. When a data is stored in DAGDA by a DIET agent (for example a SeD after 
execution of the service),  DAGDA associates  a unique ID to it.  When another DIET 
agent requests the data using this ID, DAGDA performs the data search and manages the 
transfer by choosing the "best" data source according to statistics about previous transfers 
duration.

To transfer a data, DAGDA uses the pull model: data items are not sent from the 
source to the destination, but they are downloaded by the destination from the source. 
Figure 1 presents how DAGDA manages the data transfers for a standard DIET call:

1. The client performs a DIET service call.
2. DIET selects one or more SeDs to execute the service.
3. The  client  submits  its  request  to  the  selected  SeD,  sending  only  the  data 
descriptions.
4. The SeD downloads the new data from the client and the persistent ones from 
the nodes on which they are stored.
5. The SeD executes the service using the input data.
6. The  SeD  performs  updates  on  the  inout  and  out  data  and  sends  their 
descriptions  to  the  client.  The  client  then  downloads  the  volatile and 
persistent return data.

At each step of the submission, the transfers are always started by the destination 
node.
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Figure 5.Figure : DAGDA transfer model

3.1.2. Container management
The DAGDA system provides a concept called a container used to group several 

data together as a single data. A container is a logical data that can contain an arbitrary 
number of data elements. Its size is dynamically adjusted and there are no constraints on 
the types of data that can be inserted as elements. This can be viewed as a dynamic array 
of pointers to data elements. Containers, as any other data items managed by DAGDA, 
can be transferred between any DAGDA agents. But the transfer of the container does not 
necessarily mean the transfer of all its elements. This is only when an element is used that  
the transfer happens.

Using  this  concept  the  workflow enactement  engine  can implement  Arrays  of 
arbitrary depth and manipulate elements within the Array, for example use references of 
elements of the Array to transfer them individually. A container produced by a given task 
executed  on  a  node  does  not  necessarily  need  to  be  transferred  completely  to  other 
processing nodes; in the case of data parallelism, only one element of the container is 
transferred to each processing node, therefore it is essential that the workflow engine can 

9 / 13



GWENDIA ANR-06-MDCA-009

provide a reference to that element only as the input of another task. The container is 
virtually splitted in different elements by the workflow engine.

Similarly when a task requires consolidation of results from many other tasks, 
usage of containers avoids data transfers through the client  that  would be required to 
build the input data. With containers the input data is virtually containing all the outputs 
to  process  but  the  data  transfers  occurs  effectively  only  when  required  and  between 
processing nodes only. 

3.1.3. Data replication
When a data item produced by a task is used by many other tasks executed on 

different  nodes,  the  data  items  is  replicated  on  all  these  nodes  therefore  making  it 
available from different sources. This behaviour is called “implicit replication”.

DAGDA also provides “explicit replication” through specific API calls available 
to  all  DIET components  (client,  agent  or  SeD).  This  can be used by the  application 
developper  to  improve  the  replication  policy  by  explicitely  choosing  specific  nodes 
where the data will be available. For example if several grid sites are involved then a data 
that will be used by nodes on different sites can be pre-replicated on one agent per site 
(usually the DIET local agent). 

3.1.4. File sharing
It is frequent that several nodes can access a shared disk partition (through a NFS 

server on a cluster for example). With DAGDA, a node can be configured to share the 
files that it manages with all its children nodes. A typical example of the usage of these 
features is for a service using a large file as read-only parameter executed on several SeD 
located on the same cluster. Figure 5 presents such a file sharing between several nodes:

• Two Local Agents and six SeDs can access to the same NFS partition (blue 
lines).
• The files registered on the first LA (red lines) are declared as shared with all of 
its children.
• If one of the SeDs or the second LA has to access to one of the files registered 
on the first LA, they can access it directly without data transfer through DIET.
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Figure 6. File sharing between an agent and its children

3.1.5. Physical resources usage configuration
The maximum amount of disk and memory space a host can use for computations 

submitted via DIET can be configured (as an option) for each DAGDA agent in order to 
avoid running out of memory or disk space during the workflow execution.

Using this feature implies that DAGDA will use a data replacement policy when 
there is a resource shortage on a DAGDA agent. Several policies are available and can be 
chosen in the configuration of the agent: either data that has not been used for the longest 
time, or data that has been stored the earliest (FIFO), will be removed first from the agent 
to free resources.

3.2. Data Management with the gLite grid middleware

The  gLite  middleware  operates  batch  system principles:  a  computing  node  is 
allocated for the time of the computation and cleared after processing. As a consequence, 
files staged in by the computational process and file produced have no longer life time 
than the process itself. Any file that needs to be preserved after computation has to be 
transferred to a permanent storage resource by the computation process itself. To help in 
this process, the MOTEUR workflow manager interface to the gLite middleware uses a 
computing tasks wrapper that takes care of input files stage in and output files backups 
prior to and following on the wrapped code execution.

This environment does not allow for optimized data transfer strategies such as 
files  persistence  and  peer-to-peer  transfer  between  computing  nodes.  All  files  are 
transferred  back  and  forth  to  storage  servers  which  are  visible  throughout  the  grid 
infrastructure. The only optimization pattern that is supported by the gLite middleware is 
files replications: a logical instance of a file can be replicated to several places (several 
physical copies). By considering the physical location of a file, one might improve jobs 
execution performance. The data transfer cost for a job running on a given cluster will be 
lowered  if  it  involves  a  storage  resource  hosted  within  this  cluster.  As  part  of  the 
submission requirements, a job can be constrained to run on a given cluster. However, the 
middleware workload manager, using clusters load information to take jobs dispatching 
decision, does not include smart strategies appreciating data transfers cost with regards to 
computing resources availability cost. As a consequence, it is never guaranteed that the 
gain obtained by performing local transfers is not out weighted by the loss of using an 
overloaded computing site.

The  global  optimization  problem  (minimizing  simultaneously  expected 
computation times and data transfer)  is very difficult  and unresolved,  especially  on a 
large  scale  grid  infrastructure  such  as  EGEE  where  only  a  partial  view  of  the 
infrastructure  status can be determined.  Therefore,  we have been addressing the  data 
transfer optimization problem at a higher level,  within the workflow engine,  were the 
knowledge  of  the  application  structure  (and  therefore  the  data  transfers  between 
consecutive tasks) can be exploited. Given that two consecutive tasks A and B in the 
workflow will cause intermediate data produced by A to be copied to a storage resources 
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before being retrieved by B from the same resource, it can be interesting to chain the 
computations of A and B on the same computing resource. This will avoid back and forth 
data transfers and have the additional advantage of submitting a single (grouped) task 
A+B instead of submitting two tasks that will both be queued for a time in the system. As 
a matter of fact, for a sequential workflow, there is always a computing time benefit for 
grouping all sequential tasks.

The  problem is  more  complex  for  non sequential  workflow graphs.  Grouping 
tasks of any graph may lead to improvement due to reduced file transfer but also losses 
due to prevention of parallelism. In [2] we have defined simple topological rules that may 
be used to decide whether the grouping of two connected tasks will lead to a loss of 
parallelism  or  not,  by  analyzing  the  workflow  graph  modified  by  the  grouping 
transformation. The recursive application of these rules until the workflow graph is not 
transformed any more leads to a simplified graph for which some grouping may have 
been applied and there is a guarantee of not loosing any parallelism opportunity.

The strategy detailed in [2] only applies safe transformations, by static analysis on 
the  workflow graph.  Further  grouping  could  be  considered  such  as  running  bags  of 
similar tasks (i.e. grouping data parallel task to some granularity level) or even grouping 
potentially independent tasks but for which the computing time is short enough for a 
grouping to be efficient as compared to a grid enactment due to the grid overhead that 
applies to each task. However, these strategies require execution and data transfer time 
estimates as run time as well as the analysis of the dynamic workflow execution directed 
acyclic graph. Such analysis involve more works that have not been addressed so far.

4. Conclusions
The GWENDIA language eases the description of large and compound data sets 

by using nested array structures. Computations applied to such structures can easily be 
described  by  applying  principles  of  array  programming  to  data-intensive  workflows. 
Although the workflow managers develop are protected from the large amount of data 
distributed over the grid infrastructure during computations by manipulating references to 
data files, data transfers have to be optimized to ensure good performance of applications.

The data transfers scheduling is  to  a large extent  dependent of the underlying 
middleware. The DIET middleware benefits from services pre-deployed and resilient on 
the computing hosts.  Such services can store persistent data,  enable peer-to-peer  data 
transfers and, in some cases, provide shared files and replicates. The gLite middleware 
complies  to  less  flexible  batch  processing rules.  Data  is  cleared  from the  computing 
nodes as soon as the computational process finishes and it has to be backed up by the 
workflow manager for later use. In that environment, files cannot be persisted on the 
computing  nodes.  It  is  possible  to  minimize  data  transfers  by  grouping  jobs  at  the 
workflow manager level though.
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