
Gwendia ANR-06-MDCA-009
Grid Workflow Efficient Enactment for Data Intensive Applications

L3.3: Evaluation of Online Multi-Workflow Heuristics based on
List-Scheduling Algorithms
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1 Abstract

This deliverable addresses the online scheduling of several applications modeled as work-
flows in grids. Although a large amount of scheduling heuristics in grids have been pro-
posed in the literature, most of them target only single tasks graph scheduling.

We propose to study this problem by extending a well-known list scheduling heuristic
(HEFT) and adapt it to the multi-workflow context. We have designed six different
heuristics based on HEFT key ideas. Those heuristics have been implemented into a
grid middleware named diet which implements the GridRPC API from the OGF. A new
component called MADAG is introduced to take into account multiple submissions of
tasks graphs.

We validated and compared our heuristics behavior with case study applications taken
from a bioinformatics project. It appears in our given scenario that all of proposed heuris-
tics have similar performance in terms of global makespan which is near the theoretical
lower bound. However there exist significant differences comparing the slowdown of each
application type.

2 Introduction

Grid computing has gained more and more importance because of the computing power
and storage capacity needed by scientific applications. During several years, grid comput-
ing was reserved to computer scientists that developed ad-hoc solutions to manage and
address the computing power of grid platforms. The development of several middlewares
made the access to production grids across the world easier and allowed to tackle more
complicated applications.

In many scientific areas, such as high-energy physics, bioinformatics, astronomy, and
others, we encounter applications involving numerous simpler components that process
data sets, execute scientific computations, and share both data and computing resources.
Such applications consist of multiple components (tasks) that may communicate and in-
teract with each other. The tasks are often precedence-related. Data files generated by
one task are needed to start another task creating precedence constraints between them.
Although this is the most common situation, the precedence constraints may also come
from branching commands or loops. Such “complex” applications are called workflow
applications.

Because of large amounts of computations and data involved, such workflows require
high computing power to be executed efficiently. This computing power and storage ca-
pacity is now provided by grids. However, resource brokers have to cope with several
applications submitted at the same time. These applications compete for the same re-
sources and some scheduling must be done between them to ensure their correct execution
and to avoid starvation while ensuring fairness.

In this paper, we propose to study the behavior of five different dynamic heuristics
based on the key ideas of the well known heuristic HEFT [35]. We focus on dynamic
workload where multiple new DAGs are submitted over time. These heuristics have been
designed to improve the slowdown of the different applications sent from multiple users to
the grid. We also observe the fairness of these heuristics which can be dramatically unfair
in some case.

We have implemented these heuristics within the diet middleware, a Network Enabled
Server environment (NES) implementing the GridRPC API from the Open Grid Forum.
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A new component called the MADAG has been added. The MADAG orchestrates work-
flows execution between users. The proposed architecture is scalable, robust, and is based
on several diet middleware features such as plug-ins scheduler and data persistency man-
agement. All the heuristics are validated and compared on the Grid’5000 research grid
using target applications coming from bioinformatics.

The rest of the paper is organized as follows. Problem description and related work
are discussed in Section 3. Then, in Section 4, we propose several heuristics for dy-
namic multi-workflow submission. Also, Section 5 describes the workflow manager called
MADAG developed in the framework of the diet grid middleware. Finally, before con-
cluding and expose future works, Section 6 exhibits and tests heuristics behaviors on case
study applications in a given scenario.

3 Problem Statement and Related Work

There are several ways to represent workflow [14], we mainly can define five types of
representation: (a) formal workflow model with Petri nets and π-calculus. (b) functional
workflow which separate function from data instance of the application. Workflow langages
such as Swift, AGWL or GSFL falls into this category. (c) services workflow which are
based on web service orchestration (Scufl, BPEL, . . . ) (d) task graph (i.e Directed Acyclic
Graph noted DAG) defines all data dependencies between each tasks and avoid cycle
(YML, DAGman, . . . ).(e) executable workflow which is a DAG where resource allocation
has been established (Concrete Pegasus, XWFL, . . . ).

In this paper, we are interested only in the Task graph model (DAG) where data
and computing time of each tasks are known. DAGs are described by a xml file which
describes tasks and data dependencies. The DAG is a generic model of a scientific workflow

Figure 1: DAG example

application consisting of a set of tasks (nodes) among which precedence constraints exist.
Formally, It is represented by a graph G = (V,E), as illustrated in Figure 1, where V
is the set of |V | vertex (node or task) that can be executed on the set of the available
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heterogeneous processors. E is the set of |E| directed edges between the node that maintain
a partial order among them. The partial order introduces precedence constraints, i.e. if
edge ci,j ∈ L, then task nj cannot start its execution before ni completes. Then the matrix
D of size |V |×|V | denotes the communication data size, where di,j is the amount of data to
be transferred from ni to nj . The weight wi of a node ni represents its computation cost.
The weight of an edge stands for the communication requirement between the connected
tasks (the amount of data that must be communicated between them). In a given task
graph, a root node is called an entry task and a leaf node is called an exit task. It is
assumed that the task graph is a single-entry and single-exit one. If there are more than
one exit or entry task, we can always connect them to a zero-cost pseudo exit or entry
task with zero-cost edges. This will not affect the model.

Several surveys are already available about scheduling for distributed systems. Among
them the following reports can be cited: workflows scheduling [38], workflow management
systems [37], and scheduling algorithms for Grid Computing [10]. The DAG scheduling
problem is NP-complete [13], but a huge amount of heuristics have been proposed. The
heuristics are classified in four main categories [24]: clustering heuristics, Duplication
based heuristics, meta heuristics, and list scheduling heuristics.

Clustering heuristics. Task clustering heuristic algorithms perform a sequence of clus-
tering steps. Initially a task is assumed to be in a cluster then each step performs a re-
finement of the previous clustering so that the final clustering satisfies or is “near” to the
original goals. The algorithms are non-backtracking, i.e., once the clusters are merged in
a refinement step, they cannot be unmerged afterwards. A typical refinement step is to
merge two clusters and zero the edge that connect them (Edge Zeroing algorithm [27]).
Other techniques such as Dominant Sequence Clustering(DSC) [31] and Linear Clustering
Method [22] exists.

Duplication based. Task duplication means scheduling a parallel program by redun-
dantly allocating some of its tasks. The main idea is to reduce the start times of waiting
tasks which can eventually improve the overall execution time of the whole program. Du-
plication based scheduling can be particularly useful for systems with high communication
overhead and when there exists much more resources compared to the number of tasks. We
can cite as illustration of this technics ; Task duplication-based scheduling Algorithm for
Network of Heterogeneous systems (TANH) [1], Duplication Scheduling Heuristic (DSH)
algorithm [23] and The Bottom-Up Top-Down Duplication Heuristic (BTDH) [6].

Metaheuristics. For an extensive survey on meta heuristic strategies see [21, 26]. Three
strategies have been most popular and successful from among the meta heuristics over the
years: simulated annealing, tabu search, and genetic algorithms. All this kind of heuristic
try to find a good scheduling and allocation for Tasks graph by exploring the space of
possible solutions. These techniques provide good solution but it take time to explore
and generate the solution and it is not adaptable to dynamic environment such as grid
systems.

List scheduling. The last method is List scheduling heuristics which carry out the fol-
lowing steps: (1) task prioritizing phase which gives an order of execution for tasks within
the DAG. (2) resources selection phase which selects the suitable resource that optimize
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a cost function. List scheduling heuristics are widely used algorithms. In fact, in the
case of homogeneous processor without cost communication any list scheduling is within
50% of the optimum, thanks to Graham [16]. However, even if clustering or duplication
heuristics are employed, then the scheduling and matching phases are comparable to list
algorithm. There are many heuristics based on prioritization idea such as Critical-Path-on-
a-Processor [34], Generalized Dynamic Level [29], Iso-Level Heterogeneous Allocation [2],
Levelized Min-Time (LMT) [18], SDC [28],etc.

One of the well known heuristic is Heterogeneous Earliest Finish Time (HEFT) [35].
In this algorithm, tasks are ranked according to the Critical Path defined as a set of
nodes and edges, forming a path from an entry node to an exit node, of which the sum
of computation cost and communication cost is the maximum. The formula to obtain the
rank of a task ni is the following :

ranku(ni) = wi +maxnj∈succ(ni)(ci,j + ranku(nj)

where wi is the mean time overall resources of the job ni and ci,j is the mean communication
cost of the edge between ni and nj over all connexion of the resources. The set succ(ni) is
the immediate successors of node ni. Usually it is named as upward rank, b-level or simply
critical path. This value is recursively computed from the exit node nexit. The list of tasks
is sorted according to non increasing of the upward rank. Then the heuristic selects the
resource which minimizes the finish time of the task considering the data transfers of
all parent tasks. The heterogeneity is tackled by considering the average cost between
resources during tasks prioritization.

3.1 Related Work

Iverson et al. [19] present a multiple workflow applications framework based on a hierarchi-
cal matching and scheduling architecture. They adopt a decentralized scheduling strategy
where each application makes its own scheduling decision during the allocated time slots.
Different scheduling time policies are compared for their impacts on overall resource uti-
lization, but they do not take into account slowdown measurement which is more a user
oriented metric. Furthermore, their study analyses this problem with simulation and there
are no implemented version of their architecture.

Zhao et al. [41] also propose composition-based approaches in order to merge multiple
DAGs into a single DAG before applying an algorithm designed for fairness. They consider
several static algorithms where all DAGs are known in advance.

Similarly Hönig et al. [17] describe a meta-scheduler for multiple DAGs, which suggests
to merge multiple DAGs into one to improve the overall parallelism and optimize idle time
of resources. However, these efforts are limited to the static case and they do not deal
with dynamic workloads. They also do not propose implemented version of their work.

Duan et al [11] have published a scheduling algorithm based on the adoption of game
theory and the further idea of sequential cooperative game. They provide two novel
algorithms in order to schedule multiple DAGs. Their algorithms work properly for appli-
cations which can be formulated as a typical and solvable game.

One last recent work [39] tackles problem of dynamic scheduling multiple DAGs from
different users. They expose a similar approach from Zhao et al. [41] without merging
DAGs. Their algorithm is similar to our G-heft algorithm and their simulation results
obtained with generated dummy graphs confirm our results obtained on real case appli-
cations.
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On the other hand, there exist many workflow management systems such as Tav-
erna [33], Triana[25], Pegasus/DAGMan [30, 32], GridFlow [4], ASKALON [12], MO-
TEUR [14, 15], etc, which implement different heuristics (see the taxonomy of workflow
system written by Buyya et al [37]). Most of them implement list scheduling heuristics
with eventually some clustering algorithms [30] or when the workflow is expressed as a
functional workflow [33, 15], it provides a scheduling called just-in-time scheduling [8],
where a mapping phase selected a free and suitable resource to execute a task when it just
becomes ready. To the best of our knowledge, the workflow enactors deal with multiple
DAGs submission by making several call to the scheduler, but there do no exist specific
strategy to take into account several users at the same time.

4 Online Multi-DAGs Scheduling Heuristics

We have exposed the main technics used for scheduling a DAG and more precisely using
the HEFT heuristic. Now we will extend this to the online case with several DAGs are
submitted over time. The problem is the following. There are several users who want to
submit several jobs (DAGs) with different data and parameters to a set of heterogeneous
grid resources. Jobs are instances of applications, and applications are sets of tasks with
data or time dependencies (DAG). Let’s extend the definition of the problem with several
applications which are submitted following its own arrival time function.

Figure 2: Multiple workfow applications submission

* (a1, a2, a3, ...) the set of applications.
* (ra1 , ra2 , ra3 ...) the arrival time of each applications.
* Gan = (V an , Ean) is the directed acyclic graph of application an.
* V an : the tasks of the application an, (van

i )i∈[,|V an |].
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* Ean : the dependencies between tasks van
i and van

j ,
(ean

i,j )(i,j)∈[1,|V an |].
* wan is the cost of the task van

i .
* dan

i,j is the dependency cost between tasks van
i and van

j

In the case of multi-DAGs, we introduced two different priorities. The first one is the
intra-DAG priority which sets the order of task within a DAG, then the inter-DAG task
priority which set the priority of a task relatively to the tasks of other applications (other
DAGs). All the tasks of the same DAG have the same intra-DAG task’s priority value. We
have decided to use the priority of the HEFT heuristic for the intra-DAG priority, because
it gives good results and there exists several paper which mentioned its good behavior.

∀an ∈ A, rankintraDAG(tan
i ) = ranku(tan

i )

ranku(tan
i ) = wi

an + max
tan
k
∈succ(tan

i )
(ci,kan + ranku(tan

k )

Similarly, the mapping phase stays unchanged. The scheduler selects the resource which
minimizes the finish time of the task considered. Then we explore several ways to set
the inter-DAG priority. All of the following heuristics respect the two ideas of the list-
scheduling, give a priority to tasks into a DAG, then select a resource that optimize a cost
function for the highest priority task unscheduled.

Algorithm 1 Online list scheduling algorithm
1: Each time a DAG ds is submitted :
2: - compute ranks (inter-DAG and intra-DAG) of each task of the DAG ds.
3: - Sort the list U of tasks by decreasing order of their rank.
4: while there are unscheduled tasks do
5: - select the first unscheduled task t from the list U .
6: - choose the suitable server s for task t.
7: - allocate t on s.
8: end while

basic. This heuristic is called basic because it does not take into account that fact that
several DAGs could be submitted over time. The inter-DAG priority is thus not set. There
is a separate management of each DAG and the HEFT [35] heuristic is applied. However,
the resources are shared.

G-heft: Global Heterogeneous Earliest-Finish-Time. The inter-DAG priority is
equal to the intra-DAG priority. This is like each time a new DAG is submitted to the
system, a meta-DAG of all the DAGs currently executed by the system is constructed and
then the HEFT heuristic is applied to this meta-DAG. It has been presented in [41] for
the static case. In fact, the construction of the meta-DAG is not necessary, and only the
tasks of the new submitted DAG need to be ranked and the ranked tasks must be inserted
into the sorted list of all tasks in the scheduler.

∀an ∈ A, rankG−HEFT
interDAG (tan

i ) = rankintraDAG(tan
i ) = ranku(tan

i )

The problem with this heuristic is that one can have DAGs which will never end if the
submission of DAGs is constant. This scheduling heuristic induces a starvation for low
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ranking tasks, (i.e the tasks at the bottom of the DAG). Because of the ranking function
of the tasks, the rank of one task will remind constant along the time. And so the low rank
tasks should never be scheduled if there is a new DAG which is submitted with tasks with
higher rank. This is why we have introduced a weight on the task based on the oldness of
their submission.

aging G-heft. This heuristic (Aging Global Heterogeneous Earliest-Finish-Time) fol-
lows exactly the same scheme of G-heft, but a coefficient is introduced into the inter-
DAG priority computation which depends on the oldness of the DAG submission. This
method can potentially avoids the starvation phenomena for low ranking tasks.

∀an ∈ A, rank
Aging G-HEFT
interDAG (tan

i ) = rankintraDAG(tan
i )× f(age)

Two types of coefficients have been explored:
inter-DAG priority depends on the oldness of the application divided by the estimated

makespan of the application. This weighting enables to take into account oldness
and length of the application.

f(age) = 1 +
age

makespan

The exponential value of the previous factor is used.

f(age) = e
1+

age
makespan

fcfs heuristic. First Come, First Served and Shortest Remaining Processing Time
heuristic change from the previous heuristics only because they take into account the
oldness of the application.

∀an ∈ A, rankFCFS
interDAG(tan

i ) = ran
i

srpt heuristic. Shortest Remaining Processing Time heuristic set the inter-DAG prior-
ity with the sum of the estimated processing time remaining with the unfinished tasks of
the DAG.

∀an ∈ A, rankSRPT
interDAG(tan

i ) = 1/
∑

tiunfinished
wi

an

The idea behind this heuristic is to finish as soon as possible DAGs which have been
submitted by selecting the tasks that belong to the lowest time consuming application.

foft heuristic. The key idea of Fairness On Finish Time (foft) is to sort the list of
applications (i.e. the DAGs) according to their slowdown value. Let’s define the slowdown
or stretch of an application as the ratio of its flow time to its processing time.

slowdownan =
Can − ran

Cpan

∀an ∈ A, rankFOFT
interDAG(tan

i ) = slowdownan

Processing time (Cpan) represents the service time of the application an. This is the critical
path of first unexecuted task in the DAG. The flow time (Can − ran) is the difference
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between the arrival time ran and the completion time Can of this application an. In order
to compute the completion time, we assume that the completion time of one application
is the estimated time at the current time if we choose to fully schedule this application.
This heuristic selects the task which belong to the DAG has have been lagged the most.

To summarize we have six different heuristics based on the key ideas of the list schedul-
ing HEFT, all of them are non-clairvoyant (e.g on-line). Five of them are multi-workflow
oriented and explore some ways of setting an inter-DAG priority onto tasks.

5 Implementation

In order to test all previous heuristics we have implemented them into The Distributed
Interactive Engineering Toolbox (diet) [5, 9] middleware environment.

This project is focused on the development of a scalable middleware with initial ef-
forts focused on distributing the scheduling problem across multiple agents. diet consists
of a set of elements that can be used together to build applications using the GridRPC
paradigm. This middleware is able to find an appropriate server according to the informa-
tion given in the client’s request (e.g., problem to be solved, size of the data involved), the
performance of the target platform (e.g. server load, available memory, communication
performance), and the local availability of data stored during previous computations. The
scheduler is distributed using several collaborating hierarchies connected either statically
or dynamically (in a peer-to-peer fashion). Data management is provided to allow per-
sistent data to stay within the system for future re-use. This feature avoids unnecessary
communication when dependencies exist between different requests (e.g. in case of same
or different requests using same data will be executed on the same server). Servers have
the possibility to launch several tasks either in a time-shared manner, either sequentially,
making servers buffer some work, with a parameter we can defined number of concurrent
jobs at a given moment on a given server [7].

An overview of the DIET architecture is shown in Figure 3. This shows the main
components of the DIET hierarchy: the Master Agent (MA), the Local Agents (LAs),the
Server Daemons (SeDs), and the MADAG which is responsible for workflow management
and scheduling. The MADAG can be considered as outside of the platform, there can be
several MADAG connected to the platform through the MA. This agent is not needed
by other components except for the client, but the client can also manage the execution
of the workflow by itself. It is important to notice that even if the MADAG controls
the execution of the workflow, there is no input/output data which is sent from client to
MADAG but only data handles.

Workflow submission. A workflow application is submitted to the MADAG as an
XML file containing the description of all tasks with their input/output ports and the
connections between these ports that represent the data flows.

The MADAG agent runs simultaneously a multi-workflow scheduler process that is
unique and one HEFT scheduler process for each new dag submission. This HEFT sched-
uler implements the intra-workflow scheduling heuristic which is HEFT in our case. There-
fore the step assigned to this process is first to parse the XML file and analyze the DAG
structure, then to get estimations of task durations from the SeDs thanks to plug-in sched-
uler and apply the HEFT heuristic to order the tasks of the DAG. This intra-workflow
scheduling phase defines an intra-workflow priority for each task (the “HEFT Priority”).
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Figure 3: Multi-MADAG architecture.
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At this stage the tasks are only ordered but not mapped to a specific resource on the grid
because this mapping depends on the next phase. The output of the first phase for a given
dag is an ordered list of tasks that are ready to be executed. This list will be continu-
ously updated each time a task terminates in order to include the new ready tasks which
are inserted in the list according to their HEFT priority. The multi-workflow scheduler
takes all the tasks lists corresponding to the dags being executed and can apply either a
task-based policy or a dag-based policy to define the order of execution for the tasks.

If we choose the task-based policy then all ready tasks of all dags will be taken into
account when we apply the inter-dag prioritization heuristic, which means that several
tasks of the same DAG may be selected before tasks of other DAGs. If we choose the
DAG-based policy then only the top priority task inside each list will be selected for the
inter-dag prioritization because the inter-dag priority will not depend on the task’s HEFT
priority but only on the DAG’s current status.

According to the policy we therefore define a set of ready tasks from different DAGs,
compute for each the inter-DAG priority and order them according to this priority. This
defines an execution list for the current round. The scheduler takes the highest priority
task in this list and tries to find the best resource in terms of earliest finish time for
this task. This is done by sending a request for submission to the grid middleware. If
a resource is found then the MADAG will send a message to the client that submitted
the corresponding dag with the reference of the selected resource. The client will execute
the task on this resource and send back a message to the MADAG when the execution
is finished. The scheduler tries to assign resource to as many tasks as possible in the
execution list, so the round terminates if either no more ready tasks are available in the
execution list or no more resources are available.

The scheduler goes into “sleep” mode until a new round is started when it receives a
message of task termination or a new DAG submission.

6 Experiments

We have tested the behavior of the implemented scheduling heuristic into the MADAG of
the diet middleware with three applications coming from bioinformatics. Those applica-
tions named pipeAlign, Gee, Maxdo are described briefly in the following section.

6.1 Multiple Alignment : PipeAlign

Homology modeling represents a powerful starting point for studies of the relationships
between a sequence particularly when based on Multiple Alignment of Complete Sequences
(MACS). The PipeAlign application is a succession of steps which produce a high quality
protein alignment starting from the query sequence. First Ballast (homology search) runs
BlastP to search for homologies in a proteins database (UniProt, SwissProt, Uniref90,. . . ).
Then BlastP search is performed using the query sequence within the PDB database.
The PDB with the best score associated with is defined as the closest PDB. DbClustal
(sequences alignment) build the multiple alignment of the sequence detected (MACS).
Rascal (alignment refinement) scans the MACS to identify misaligned residues and blocks.
NorMD (objective function) evaluate the quality of both DbClustal and Rascal alignments.
Leon (unrelated sequence removal) process the highest scored MACS and removes potential
weakly related or highly fragmented sequences to generate the final MACS, which is also
scored by NorMD. Finally, DPC/Secator (clustering step) clusters subfamilies.
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Figure 5 shows the workflow defined by the PipeAlign application. This application
takes as input a protein sequence and user parameters, then computes all steps of the
worklfow. The precedences constrains symbolized by the edge between tasks represent
data dependency: output files are required for the execution of the next step. We assume
that the data bases (i.e. Uniref90, Uniprot, SwissProt, . . . ) are already deployed on the
execution server, and we do not take into account the movement of this read only database.

6.2 Proteins docking application : MAXDo

This application is used to detect protein-protein and protein-DNA interactions. Iden-
tifying pairs or larger complexes of functionally interacting proteins, or determining the
binding of a protein to a DNA sequence or to a ligand are fundamental problems in biology
with immediate consequences in drug design. MAXDo is a docking program which com-
putes optimal interaction geometries using multiple energy minimizations with a regular
array of starting positions and orientations.

Figure 5 represents the workflow of the docking application. The first task of the
diamond workflow takes the two proteins to dock and computes the parameters info needed
to determine the search space of binding sites. Then it divides the search space into 4
tasks and sends the proteins files and the parameters to the 4 docking tasks. After all the
docking tasks are finished the last task collects the result files of the docking computation
and computes statistics information about the minimization.

6.3 Gene Expression Evolution application : GEE

This application annotates human genes according to not only their expression in neuro-
logical or muscular tissues, but also the expression of their homologs in other species. This
method allows to propose new targets for furthers investigation, by annotating the human
genome with the respect to implication in normal or pathological neuromuscular processes.
The scientific aims are to build an efficient workflow for annotation based on compara-
tive analysis in gene expression, and to highlight the conservation or evolution of gene
expression in animals, for a well defined biological process (neuromuscular development
and function).

The methodology used consists of the following steps: mapping of expression data
to animal genes by sequences similarity; integration of the expression information into a
multi-species ontology; clustering of genes in gene families, for which alignment and phy-
logenies are build; guided automatic selection of gene families with relevant expression
patterns. Annotating the human genome for neuromuscular processes, and especially the
highlighting of gene families involved in abnormal processes (diseases, mutation, treat-
ments . . . ), provide promising targets for further biomedical investigation. This is notably
interesting for discovery of genes involved in rare genetic diseases, not easily amenable to
classical approaches.

Figure 5 represents the workflow of the Gene Expression Evolution application.

6.4 Settings and scenario

In order to validate the behavior of the heuristics presented, we have set a framework that
reproduce the behavior of a light grid environment where several user shared resources.
Figure 4 illustrates the deployed architecture. All services needed by the three applications
are declared in the SeDs which are all executed on different resources. The MADAG and
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MAXDo PipeAlign GEE
makespan 33 s 1 min 36 s 2 min 3 s∑

w 1 min 20 s 2 min 5 s 3 min 20 s

Table 1: Makespans for each application executed alone with 4 resources (mean over 3
runs).

the MasterAgent are deployed on the same host and one server per SeD which runs tasks
one by one. If there are more than one task assigned to the same SeD, this SeD puts
the additional tasks into queue, then the task is selected with the FIFO policy (First In,
First Out). For all the 14 services; the 3 services of MAXDo application, the 7 services
of PipeAlign and the 4 services of GEE, the SeD can estimate the time needed to execute
the task based on its performance and task requirement.

Figure 4: Evaluation platform

One may have noticed that the test environment is quite small with only 4 servers able
to compute services, but all the multi-workflow heuristics have sense only when user’s jobs
are competing for having resources. If the number of resources is greater than the number
of concurrent tasks execution, all the heuristics have the same behavior and schedule
DAGs just like the HEFT heuristic. That’s why we use this small environment in order to
exhibit the behavior of the heuristics in a shared environment. This is not a limitation of
the diet middleware that has already ran experiment on over more than 1000 processors
to execute 45000 clients’ requests.

The mean execution time and the valuation of the HEFT ranking function for each
task of the application is given in Figure 5. Furthermore the mean makespan of each
application executed alone is given in Table 1.

The experiment follows the following scenario:
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Figure 5: Valuated graph for GEE, MAXDo, and PipeAlgin applications.

• At r0, start of the experiment, the first client submits its workflow application.
Then, every 12 seconds a new client submits its DAG. The type of application is
selected randomly among the applications that have not been submitted. The last
submission of the first series happens at r0 + 600s. The first series make 10 requests
of the GEE application, 25 of MAXDo and 16 of PipeAlign;
• At r0+1200s, an other random series of submission is done with the same number

of DAGs of each type. The last submission is done at r0+ 1800s.
The parameters used for this experiment were selected in order to have the same

amount of processing time asked for each applications type:∑
wGEE =

∑
wMAXDo =

∑
wPipeAlign

Figure 6 shows the number of DAGs managed by the MADAG from the begin to the end
of the experiment for each heuristic, and Figure 7 exhibits the number of tasks ready to
be executed. The red cross stands for the submission date ran and the hight of the red
cross represents the number of tasks of the submitted applications (e.g. 17 for GEE, 6 for
MAXDo, 9 for PipeAlign).

The Figures 6 and 7 express several behaviors :
• For all heuristics, the makespan of the experiment is similar. In particular, if this

time is compared to one lower bound of the makespan (considering 4 processors and
all tasks of application as divisible tasks without any constraint), we observe that
all heuristics are between 2% to 3.5% near this theoretical lower bound;
• Those heuristics which set a inter-DAG priority (foft, fcfs, srpt) and aging e G-

heft, end DAG earlier;
• Conversely, the G-heft, aging G-heft achieve the complete DAG execution almost

at the same time at the end of the experiment.
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Figure 6: Number of DAGs submitted along the experiment.
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• Introducing the oldness into the inter-DAG priority improves the number of DAGs
ending earlier increases (G-heft compared to aging G-heft);
• Figure 7 illustrates the wave progression of the heuristic G-heft. Indeed this

scheduling policy gives the inter-DAG priority equal to the intra-DAG priority, As
in this experiment, all the submitted task graphs of one application are similar, it
produces a scheduling that order all the “same” tasks with the same priority and so
a wave progression of task execution. Introducing the oldness changes this behavior
a bit.
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Figure 7: Number of tasks ready to execute.

Figures 8 and 9 present the box & whiskers plot [36] of slowdown statistics. The
length of the box stands for the interquartile range (Q3 − Q1), the stick and point into
the box stand respectively for the median and the mean value, the two whiskers stand for
the minimum and the maximum. As for the foft heuristic, the slowdown is defined as
the ratio between the makespan of the application in the experiment and the estimated
makespan if executed alone (see Tab 1). More the value is closer to 1, less the application
has been slow.

Without any surprise, the G-heft heuristic has the worst slowdown (highest one).
Namely this heuristic could never end any DAG execution if there was a continuous DAGs
submission. We also observe the fact that introducing oldness into the inter-DAG priority
decreases the slowdown values. Furthermore, in the selected scenario, the srpt heuristic
gets the lowest mean slowdown followed by foft, aging e G-heft, and fcfs. Indeed, the
selection criterion of srpt promotes the MAXDo application which needs less comput-
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Figure 8: Box & Whiskers plots of slowdown for all application types without distinction.

Figure 9: Box & Whiskers plots of slowdown for each application (MAXDo, pipeAlign,
GEE );
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ing time. In the same way, the MAXDo application has also the smallest makespan (see
Table 1) and consequently it is much more slowdown sensitive. In particular, Figure 9 illus-
trates the homogenization tendency of slowdown for the foft heuristic contrary to srpt
which favor short application and fcfs which unfavor MAXDo compare to other. Finally,
the aging e G-heft heuristic aggregates advantages of fcfs, foft and srpt by setting
the inter-DAG priority which highly (exponential) depends on the ratio age/makespan of
the application (see also Figure 6). Indeed, the application with a small makespan have the
ratio age/makespan much more sensitive compare to other. In addition, the exponential
function depending on age gives a behavior similar to the fcfs.

Now, let’s take care of the fairness. There are several ways to define fairness [3, 20, 40].
This value considers the difference between application regarding some metric. Here we
define the fairness as the dispersion around the slowdown suffers by each application.
Several values give measurement of dispersion and so fairness.
• range: the length of the smallest interval which contains all the data;
• interquartile range: the difference between the third and first quartiles;
• average deviation: arithmetic mean of the absolute difference compare with the

mean;
• standard deviation: quadratic mean of the difference compared with the mean.

The box & wishkers plot of Figures 8 and 9 shows most of the precedent dispersion values.
We observe that aging e G-heft, foft have the smallest dispersion value which exhibits
the fairness of these heuristics. Moreover, they have a better mean slowdown compared
with basic heuristic.

In brief, with this experiment scenario, it appears that the experiment makespan stays
comparable for each heuristics and it is near one theoretical lower bound (between 2% and
3,5%). Furthermore, the best heuristic regarding the mean slowdown is the srpt. For
this scenario, it can be explained because of the high number of small applications (e.g.
MAXDo). Also it is better to promote small applications in order to get a low slowdown,
insofar as those small applications are much more sensitive to slowdown. Concerning
fairness, aging e G-heft and foft heuristics get the smallest dispersion of slowdown
values and it keeps a mean slowdown near the best one obtains with srpt.

6.5 Others experiments and scalability

We have also launched many other experiments in order to qualify the behavior of our
heuristics. For example, we have tested different order of arrival time, different application
numbers, different sizes of the applications parameters (processing time), and different
resources. The conclusion of the commented scenario appears to be quite general and
valid in most cases, but of course, there are counterexamples and bad situations for some
heuristics.

The MADAG implementation is quite robust and it can handle many workflows exe-
cution. But as it is a central point of connection for clients that share resources, it can
become a bottleneck. As presented in Figure 3, there can be several MADAG connected to
the diet hierarchy. In this case, the multi-workflow heuristics would be inefficient unless
all clients that submit jobs to each MADAG use the same resource exclusively. In any
case, the implementation proposes a valid model to enable multi-workflow scheduling.
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7 Conclusion and future works

This paper attacked the problem of scheduling dynamically several workflow applications
sent in an online fashion to a grid environment. The application execution are concurrent
and share the same resources. Five new heuristics named G-heft, aging e G-heft,
srpt, fcfs, and foft have been proposed. All of them are based on the key ideas of the
classical list scheduling heuristic HEFT. We have proposed to introduce the notion of inter-
DAG and intra-DAG priorities. In general, it seems that G-heft should be avoid in the
context of dynamic submission of workflows among time if we take care about slowdown
of applications. Nevertheless it can produce good performance in term of experiment
makespan. On the other hand, foft and aging e G-heft heuristics are still the most
fair heuristic and when the proportion of small applications is high, it can be appropriate
to use the srpt heuristics.

In the next step, we plan to explore other key ideas in the ordering and mapping
phases. For example, we can use other ranking function to deal with heterogeneity such
as the SDC [28] heuristic which takes into account the effect of Percentage of Capable
Processors. We also can change the mapping function which minimizes the finish time of
the task when it selects the resource. Moreover, we can deal with workflow applications
that need multi-processors assignment. Finally, we have planned to extends the behavior of
the MADAG to enable functional workflow description where the whole DAG is not known
in advance and test with other kind of applications where the workflow is dynamically build
among the execution.
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