
Gwendia ANR-06-MDCA-009
Grid Workflow Efficient Enactment for Data Intensive Applications

L1.2: Bibliography on Workflow Scheduling Heuristics

Raphaël BOLZE GRAAL (LIP) raphael.bolze@ens-lyon.fr
Frédéric DESPREZ GRAAL (LIP) frederic.desprez@ens-lyon.fr
Tristan Glatard RAINBOW (I3S) glatard@i3s.unice.fr
Johan Montagnat RAINBOW (I3S) johan@i3s.unice.fr

Abstract

We propose a survey on the different workflow scheduling heuristics on grid plat-
forms. Our aim is to provide a state of art of the different techniques used to tackle
the problem of scheduling workflow applications on distributed and heterogeneous
platforms. We also take a close look at existing workflow management systems.

raphael.bolze@ens-lyon.fr
frederic.desprez@ens-lyon.fr
glatard@i3s.unice.fr
johan@i3s.unice.fr

Gwendia ANR-06-MDCA-009

Contents

1 Introduction 3

2 Problem modelisation 3
2.1 DAG model . 3
2.2 Ressources model . 4

3 Scheduling heuristics 5
3.1 List scheduling . 6
3.2 Clustering heuristics . 7
3.3 Duplication based . 7
3.4 Metaheuristics . 9

3.4.1 Constraint Logic Programming . 10
3.4.2 Natural evolutionary computation 11
3.4.3 Neural networks . 12
3.4.4 simulated annealing . 12
3.4.5 Tabu search . 13

4 Scheduling Workflows 13
4.1 Scheduling with Constraints . 13

4.1.1 Storage constraints . 13
4.1.2 Budget constraints . 13
4.1.3 Deadline constraints . 13

4.2 Scheduling strategies of specific Workflow systems 14
4.2.1 Pegasus . 14
4.2.2 Askalon . 14
4.2.3 Gridflow . 14
4.2.4 GrADS . 14

5 Conclusion 14

2

Gwendia ANR-06-MDCA-009

1 Introduction

Large problems coming from numerical simulation or life science can now solved through
the Internet using grid middleware infrastructure. Several approaches co-exist to port
applications on grid platforms like classical message-passing, batch processing, web portals,
etc. Even if the first applications of grid platforms were made of large sets of independent
tasks, real life applications consists of graphs of dependent tasks, also named workflows.
The scheduling of these tasks over distributed, heterogeneous, and dynamic platforms is
a big challenge for computer scientists.

Scheduling has attracted numerous researches from theory to pratical implementation
in software environments. This tough problem [38] is even more complicated for real-
life application workflows on non-dedicated environment. In this report, we survey the
different techniques for scheduling application workflows on grids.

Several surveys are already available around scheduling for distributed systems. Among
them the following reports are close to our researches: static algorithms [37], workflows
scheduling [69], workflow management systems [67], and scheduling algorithms for Grid
Computing [11].

The rest of this report is organized as follows. The first section (2) presents the
modelization of the problem and the resources used. The second section presents a survey
of scheduling heuristics for DAG on distributed platforms. The last section before the
conclusion describes the algorithms taking into account QoS constraints (on data, budget,
or deadlines) as well as algorithms chosen for existing workflow middleware.

2 Problem modelisation

2.1 DAG model

The DAG is a generic model of a workflow application consisting of a set of tasks (nodes)
among which precedence constraints exist. It is represented by G = (V,E), where V is the
set of v tasks that can be executed on a subset of the available processors. E is the set of
e directed arcs or edges between the tasks that maintain a partial order among them. The
partial order introduces precedence constraints, i.e. if edge ei,j ∈ E, then task vj cannot
start its execution before vi completes. Matrix D of size v× v denotes the communication
data size, where di,j is the amount of data to be transferred from vi to vj . A task graph
is a weighted graph. The weight wi of a node vi usually represents its computation cost.
The weight of an edge stands for the communication requirement between the connected
tasks (the amount of data that must be communicated between them). In a given task
graph, a root node is called an entry task and a leaf node is called exit task. it is usually
assumed that the task graph is a single-entry and single-exit one. If there is more than
one exit or entry task, we can always connect them to a zero-cost pseudo exit or entry
task with zero-cost edges. This will not affect the model.

Parallel scientific applications can be divided in two major classes: data– and task–
parallel applications. The former consists in applying the same operation in parallel on
different elements of a data set, while the latter is defined to be concurrent computations on
different data sets. These two classes can be combined to get a simultaneous exploitation
of data– and task–parallelism, so called mixed–parallelism. In mixed–parallel applications,
several data–parallel computations can be executed concurrently in a task–parallel way.
Mixed–parallelism programming employs a M–SPMD (Multiple SPMD) style which is

3

Gwendia ANR-06-MDCA-009

Figure 1: DAG example

the combination of both task–parallelism (MPMD) and data-parallelism (SPMD). Such
an exploitation of mixed–parallelism has many advantages. One of them is the ability
to increase scalability because it allows the use of more parallelism when the maximal
amount of data– or task–parallelism that can be exploited is reached. A good overview of
this topic is given in [4].

Most of the researches about the simultaneous exploitation of data– and task–parallelism
have been done in the area of programming languages to give simple high level accesses
to more parallelism and in the area of compilers, where problems such as scheduling and
allocation of concurrent data–parallel tasks are studied [56].

2.2 Ressources model

There are a lot of possible way to define the resources model. In general, the resource
model is modelized as a valued directed graph where vertices represent resources and
edges represent connections between 2 resources. Let’s define a set of resource R {ru,
1 ≤ u ≤ |R|}, and a set of connection C between 2 resources ru and rv, cu,v. This defines
the platform model ℘ = (R,C). The platform model is define by a topology : the shape
of the graph. You can imagine a plethora of topology usual set of those used are : linear
chain, bus , ring, strar, mesh, tree, hypercube, clique, and combinaison of the different
regular topology.

Then, when the toplogy is chosen, the characteristic of the resources are defined :
computing capacity, storage capacity ... , The connection are valued by a capacity or a
bandwidth.

Classical topology for a computing platform is virtual clique of resources, each resource
can communicate with each other. Then this model is decline into different variants :

1. fully homogeneous : all resources are homogeneous i.e they all have the same char-
acteristic

2. fully uniform heterogeneous : all resources are heterogeneous, it exists a relation

4

Gwendia ANR-06-MDCA-009

Figure 2: topology examples

between the properties of the resources i.e : one resources is twice faster than an
other for all tasks

3. fully unrelated heterogeneous : all resources are heterogenous and it does not exist
any relation between characteristics of the resources.

Some of research try to define a realistic communication model between resources,
some others define a realistic model for the computation model. The difficulty in the
workflow scheduling problem is that we have to take into acount 2 realistics models, one
for the communication layer and one for the computation.

The choice of the resource model is important for the definition of the scheduling
problem. All resource model try to fit a particular real world situation. Theoritical results
usually depend on the resource model.

3 Scheduling heuristics

A plethora of heuristics have been proposed based on a wide spectrum of techniques,
including branch-and-bound, integer-programming, searching, graph- theory, randomiza-
tion, genetic algorithms, and evolutionary methods. The objective of this survey is to
describe various scheduling algorithms and their functionalities in a contrasting fashion as
well as examine their relative merits in terms of performance and time-complexity.

5

Gwendia ANR-06-MDCA-009

3.1 List scheduling

List scheduling heuristics maintain a list of nodes according to their priorities. A list
scheduling algorithm repeatedly carries out the following steps:

(1) Take a task from a list of unscheduled ready task. A task becomes ready for assign-
ment when all of its parents are scheduled.

(2) Select a suitable processor for assignment. Typically, a suitable processor is one that
can execute the task the earliest.

(3) Assign the task the ”suitable processor” and the task from the listof unschedule
tasks.

The first step of the list scheduling is also known as task prioritizing, the second step as
processor selection. We can distinguish static and dynamic list scheduling : the scheduling
list is statically constructed before node allocation begins and the sequencing in the list
is not modified. In some heuristics, the priority of unscheduled tasks are recomputed
after each (or a certain number of) allocation then the scheduling list sequencing is re-
arranged. Those list scheduling heuristics are named as dynamic. Dynamic list scheduling
can potentially generate better schedules. However, a dynamic approach can increase the
time-complexity of the scheduling algorithm.

There are various ways to determine the priorities of nodes. Two frequently used
attributes for assigning priority are the t-level (top level) and b-level(bottom level). The
t-level of a task ni is the length of a longest path (the longest path is not unique) from
an entry node to ni (excluding ni). Here the length of a path is the sum of all the node
and edge weights along the path. The t-level ni highly correlates with nis earliest start-
time, denoted by Ts(ni) , which is determined after ni is scheduled to a processor. This is
because after ni is scheduled, its Ts(ni) is simply the length of the longest path reaching
it. The b-level of a node ni is the length of a longest path from ni to an exit node. The
b-level of a node is bounded from above by the length of a critical path. A critical path
(CP) of a DAG, which is an important structure in the DAG, is a longest path in the
DAG. Clearly, a DAG can have more than one CP. The s-level ... The time-complexity of
a procedure to calculate the t-level, the b-level or the s-level is O(e + v).

node b-level t-level sl ALAP
t1 37 0 26 0
t2 21 5 17 16
t3 25 5 20 12
t4 32 5 22 5
t5 16 12 15 21
t6 18 19 12 19
t7 6 31 5 31
t8 3 34 3 34

Different algorithms use the t-level and b-level in different ways. Some algorithms
assign a higher priority to a node with a smaller t-level while some algorithms assign a
higher priority to a node with a larger b-level. Still some algorithms assign a higher priority
to a node with a larger (b-level - t-level). In general, scheduling in a descending order of
b-level tends to schedule critical path nodes first, while scheduling in an ascending order

6

Gwendia ANR-06-MDCA-009

of t-level tends to schedule nodes in a topological order. The composite attribute (b-level
- t-level) is a compromise between the previous two cases. If an algorithm uses a static
attribute, such as b-level or static b-level, to order nodes for scheduling, it is called a static
algorithm; otherwise, it is called a dynamic algorithm. The Tab 3.1 shows the value of
the different attributes describe in the case of the DAG of the Figure 1.

Comp. costs Comm. cost Priority List type Complexity
HLEFT any any b-level static O(v2)

List scheduling heuristics have been extensively used for mixed parallelism problems.
In [53], Ramaswamy introduces a structure to describe mixed–parallel programs: the

Macro Dataflow Graph (MDG), a direct acyclic graph where nodes represent sequential
or data–parallel computations and edges represent precedence constraints, with two dis-
tinguished nodes, one preceding and one succeeding all other nodes. Once the MDG is
extracted from the code, a two step algorithm is applied to place and schedule tasks on
the computing resources.

3.2 Clustering heuristics

Task clustering heuristic algorithms [39] have a number of properties in common when they
try to achieve the goal of finding an optimal clustering for a DAG G. They all perform a
sequence of clustering refinements starting with an initial clustering (initially each task is
assumed to be in a cluster). Tasks are grouped into a set of clusters (unbounded) using
linear or nonlinear clustering heuristics [16], [35], [66], [62] Each step performs a refinement
of the previous clustering so that the final clustering satisfies or near to the original goals.
The algorithms are non-backtracking, i.e., once the clusters are merged in a refinement
step, they cannot be unmerged afterwards. A typical refinement step is to merge two
clusters and zero the edge that connect them. Zeroing the communication cost on the
edge between two clusters try to achieve the goal of reducing the makespan (or parallel
time) of the schedule. in the second phase, clusters are mapped onto the set of available
processors using communication sensitive or insensitive heuristics [41]. Complexity of
clustering algorithms tends to be lower in comparison to list-based techniques because
during the clustering phase, the former is not required to work on the limited processors
constraint as is generally the case with the latter, and during the mapping phase, low
complexity load balancing heuristics may be employed in clustering-based algorithms.
However, comparison in terms of quality of schedule generated is left open [40].

3.3 Duplication based

from [1] Task duplication means scheduling a parallel program by redundantly allocating
some of its tasks on which other tasks critically depend. This reduces the start times
of waiting tasks which can eventually improve the overall execution time of the whole
program. Duplication based scheduling can be particularly useful for systems with high
communication overhead such as a network of workstations.

Duplication Scheduling Heuristic. The DSH (Duplication Scheduling Heuristic) al-
gorithm [36] uses the static level (defined as the largest sum of computation costs along
a path from the node to an exit node) as the priority for each node. The algorithm con-
siders each node in descending order of their priorities. In examining the suitability of a

7

Gwendia ANR-06-MDCA-009

processor for a node, the algorithm first determines the start time of that node on the
processor without duplication of any ancestor, and then considers the duplication time
slot (the idle time period from the finish time of the last scheduled node on the processor
and the start time of the node currently under consideration). If a suitable processor is
found, the algorithm attempts to duplicate the parents of the node into the duplication
time slot until either the slot is used up or the start time of the node does not improve
further. This process is repeated for other processors and the node is scheduled to the
processor that gives the smallest start time. The DSH algorithm calculates the priorities
of nodes based on static levels which may not accurately capture the relative importance
of nodes because dynamically changing communication costs (during the scheduling steps)
among nodes are not taken into account. Furthermore, duplication may not always be
very effective since the algorithm considers only one idle time slot on a processor.

PY algorithm. The PY algorithm (named after Papadimitriou and Yannakakis) [47]
uses an attribute called the e-value to approximate the absolute achievable lower bound
of the start time of a node. This attribute is computed recursively beginning from the
entry nodes to the exit nodes. After computing the e-values, the algorithm inserts each
node into a cluster in which a group of parents are duplicated such that the data arrival
times from these ancestors are larger than the e-value of the node. It has been shown that
the schedule length generated by the algorithm is within a factor of two from the optimal.
The algorithm clusters nodes in a subgraph for duplication by using a node inclusion
inequality which checks the message arrival times against the lower bound values of the
candidate node under consideration. This can potentially leave out the nodes which are
more important for reducing the start time of the given node, and this may lead to a poor
schedule.

Lower Bound. We call the algorithm proposed in [9] the LWB (Lower Bound) algorithm
based on its main procedure. The algorithm first determines the lower bound start time
(denoted by lwb) for each node and then identifies a set of critical edges in the DAG. A
critical edge is one in which a parents message available time for the child is greater than
the lower bound start time of the child. Thus, the parent and child have to be scheduled
to the same processor in order to reduce the start time of the child. Based on this idea, the
LWB algorithm schedules every path of critical edges to a distinct processor. Since these
paths may share ancestors, duplication is employed. It should be noted that the lwb value
of a node is different from the e-value used in the PY algorithm in that the lwb value is
computed by considering a single path from an entry node, while the e-value is computed
by taking the whole subgraph reaching the node into account. The algorithm considers
only those ancestors which are on a single path. When a node has more than one heavily
communicated parent, this technique does not minimize the start time of the node (which
can be done by duplicating more than one parents on a processor). Nevertheless, as is
shown in [9], the LWB algorithm can generate optimal schedules for task graphs in which
node weights are strictly larger than any edge weight.

Bottom-Up Top-Down Duplication Heuristic. The BTDH (Bottom-Up Top-Down
Duplication Heuristic) algorithm [8] is essentially an extension of the DSH algorithm [36]
described above. The major improvement brought by the BTDH algorithm over the
DSH algorithm is that the former keeps on duplicating ancestors of a node even when
the duplication time slot is filled up and the start time of the node under consideration

8

Gwendia ANR-06-MDCA-009

temporarily increases. This strategy is based on the intuition that the start time may
eventually be reduced by duplicating all the necessary ancestors. As the BTDH algorithm
also uses static level for priority assignment, it may not always accurately capture the
relative importance of nodes.

Linear Clustering with Task Duplication. The LCTD (Linear Clustering with Task
Duplication) algorithm [5] first iteratively clusters nodes into larger nodes. At each iter-
ation, nodes on the longest path are clustered and removed from the task graph. This
operation is repeated until all nodes in the graph are removed. After performing the
clustering step, the LCTD algorithm identifies those edges among clusters that deter-
mine the overall completion time. The algorithm then attempts to duplicate the parents
corresponding to these edges to reduce the start times of some nodes in the clusters. Lin-
ear clustering may not always accurately identify the nodes that should be scheduled to
the same processor. In addition, in the context of duplication based scheduling, linear
clustering prematurely constrains the number of processors used. This constraint can be
detrimental because the start times of some critical nodes may possibly be significantly
reduced by using a new processor in which its ancestors are duplicated.

Critical Path Fast Duplication. CPFD is an algorithm that based on partitioning
the DAG into three categories: critical path nodes (CPN), in-branch nodes (IBN), and
out-branch nodes (OBN). An IBN is a node from which there is a path reaching a CPN. An
OBN is a node which is neither a CPN nor an IBN. Using this partitioning of the graph, the
nodes can be or- dered in decreasing priority as a list called the CPN-Dominant Sequence.
CPFD will then schedule all the nodes according to the CPN-Dominant Sequence following
some rules.

Large Scale Optimal Algorithm. An optimal algorithm (LSOA) for task duplication
based cluster scheduling. LSOA searches the whole problem space, therefore it promises
optimal solution while not guarantee acceptable running time. LSOA has effective cutting
strategies to reduce the search spaces. Although running time degenerates with the incre-
ment of CCR rapidly, LSOA can found optimal solutions using less time than sub-optimal
algorithms such as CPFD in many large scale cases

Task duplication-based scheduling Algorithm for Network of Heterogeneous
systems. Task duplication-based scheduling Algorithm for Network of Heterogeneous
systems (TANH) [3], [54],[55]

3.4 Metaheuristics

from [43] The family of metaheuristics includes, but is not limited to, adaptive memory
procedures, ant systems, evolutionary methods, mimetic algorithms, variable neighbor-
hood search, greedy randomized adaptive search, scatter search, neural networks, and
their hybrids. For an extensive survey on metaheuristic strategies see [34, 57]. Three
strategies have been most popular and successful from among the metaheuristics over the
years: simulated annealing, tabu search, and genetic algorithms.

Metaheuristics are a class of approximate methods that have been developed dramat-
ically since their inception in the early 1980s. They are designed to attack com- plex
optimization problems where classical heuristics and optimization methods have failed to

9

Gwendia ANR-06-MDCA-009

be effective and efficient. A metaheuristic is formally defined as an iterative generation
process which guides a subordinate heuristic by combining intelligently different concepts
for exploring and exploiting the search space, learning strategies are used to structure in-
formation in order to find efficiently near-optimal solutions Local (neighbourhood) search
methods form a general class of heuristics to obtain near-optimal (approximate) solution
with a reasonable computational time. For a minimisation problem, the local search de-
scent method is the simplest neighbour- hood search algorithm. It starts from an initial
solution as its current solution. It then explores the vicinity of this solution using a cer-
tain mechanism to generate neigh- bouring solutions. Neighbours are then accepted to
replace the current solution if they improve upon it. The search continues until no further
improvement can be made and the algorithm terminates with a local optimum. The local
optimum produced by the local search procedure can be very far from optimality. In
order to avoid such disadvantages while maintaining the simplicity and generality of the
approach, the following concepts which form the basis of most metaheuristics are normally
consid- ered:

(1) Start from good initial solutions which can be generated intelligently using greedy
random adaptive search procedures [14] or space-search methods [61]

(2) Use the learning strategies of neural networks [60] and tabu search [25] that gather
information during the algorithms execution in order to guide the search to find
possibly better solutions.

(3) Employ non-monotonic search strategies that sample accept neighbours based on
hybrid modifications of simulated annealing and tabu search methods or others [23,
24]; [63]; [44, 46, 45], and [29].

(4) Introduce a more complex neighbourhood mechanism, such as ejection chains, see
[19]; [12] and [6] and compound moves with proper data structures, [22]; [44] and
[30].

(5) Employ a solution-generation mechanism that works on a set of solutions rather than
a single solution, as in genetic algorithms [42], evolutionary programming [15] and
scatter search [21].

3.4.1 Constraint Logic Programming

Constraint Logic Programming (CLP) is a field of research in Artificial Intel- ligence [64].
CLP techniques have recently attracted much interest and become commercially adopted
due to their ability to represent and solve constraint satisfaction problems, and are thus
suitable for dealing with scheduling problems [31]. In CLP, a problem is formulated in
terms of finite domain variables and the constraints imposed upon them. Finite domain
variables are those which can be assigned a finite number of integer values. A solution
is found through enumeration of a tree search. A CLP technique would generate values
for the variables, propagating values through the constraints in order to prune parts of
the solution space where inconsistencies are discovered. At each step of the enumeration,
consistencies between the original constraints and those added during the process are
kept by altering the domains of the relevant variables through removing certain integer
values from their domains. Constraints can force a variable to have an empty domain,
indicating no possible value to satisfy all the constraints. Therefore, the added con- straint

10

Gwendia ANR-06-MDCA-009

is violated; branching is then halted and backtracking takes place. The basic method is
therefore a backtrack search with a look-ahead mecha- nism. Look-ahead algorithms
propagate constraints after assigning a value to each variable in order to reduce the search
space and anticipate dead-ends (Haralick and Eliott, 1980). A CLP method does not need
to be programmed by the user, but is provided by the CLP languages, such as PROLOG.
The price for such flexibility is a loss of efficiency in solving even a moderate size problem.
However, intelligent back- tracking, learning and other hybrid algorithms are often used
to improve the CLP performance [17]; [50]; [10] and [51].

3.4.2 Natural evolutionary computation

The field of natural evolution is in a stage of tremendous growth. The most obvious ap-
proach is to characterize the field in terms of its historical evolution. There are currently
three well-defined paradigms which have served as the basis for much of the research in the
field: Genetic Algorithms (GA); Evolution Strategies (ES); Evolutionary Programming
(). Each of these paradigms emphasizes a different facet of natural evolution. In gen-
eral, these paradigms are based on a population-based optimization process. Simulating
this process on a computer results in stochastic optimization techniques that can often
outperform classical methods of optimization when applied to difficult real-world prob-
lems. Historically, there are associations between GAs and binary string representations
of solutions, between ESs and vectors of real numbers and between EPs and finite state
machines. The EP and ES communities have emphasized a mechanism for reproduction
based on mutation. By contrast, the GA community emphasized reproduction based on
recombination and mutation.

Genetic algorithms. Genetic algorithms (GAs) originated from the studies of cellular
automata conducted by John Holland and his colleagues. Hollands book in 1975 is gener-
ally acknowledged as the beginning of GA research and only recently has their potential
for solving combinatorial optimization problems been explored. Genetic algorithms owe
their name to an early emphasis on representing and manipulating individuals in terms of
their genetic make-up rather than using a phenotypic representation. The basic idea is to
maintain a population of candidate solutions which evolves under a selective pressure that
favours the survival of the fittest. Hence they can be viewed as a class of local search meth-
ods that employ a solution-generation mechanism which operates on attributes of a set of
solutions rather than attributes of a single solution using a move-generation mechanism.

The fundamental idea of GA is that it operates on a finite population of N chromo-
somes (solutions). The chromosomes are fixed strings with binary values (alleles) at each
position (or locus). An allele is the 0 or 1 value in the bit string, and the locus is the
position at which the 0 or 1 value is present in each location of the chromosome. Each
chromosome of the population is evaluated according to some fitness function. Members
of the population are selectively interbred in pairs to produce offspring. The fitter a mem-
ber of the population the more likely it is to produce offspring. Genetic operators are
used to facilitate the breeding process that results in offspring inheriting properties from
their parents. The offspring are evaluated and placed in the population, possibly replacing
the weaker members of the last generation. Thus, the search mechanism consists of three
phases: evaluation of the fitness of each chromosome, selection of the parent chromosomes,
and applications of mutation and re-combination (crossover) operators to the parent chro-
mosomes. The new chromosomes resulting from these operations form the population for

11

Gwendia ANR-06-MDCA-009

the next generation and the process is repeated until the system ceases to improve. The
survival of the fittest principle ensures that the overall quality of solutions increases as the
algorithm progresses from one generation to the next.

3.4.3 Neural networks

Artificial neural networks are very powerful in scientific and engineering applications when
used to predict, classify or recognize patterns due to the inherent data classification capa-
bilities and massively parallel processing power. They have not been as successful when
applied to optimization problems and are not competitive with the best metaheuristics
from the operations research literature, when applied to combinatorial optimization prob-
lems. The interest in using neural networks for combinatorial optimization problems began
in the mid-1980s with the work of [32, 33] on the travelling salesman problem. There are
two basic approaches to using neural networks for solving optimization problems. The
first approach is based on statistical physics and includes the Hopfield- Tank and the
Mean-Field annealing neural networks algorithms. In the Hopfield-Tank approach, the set
of all possible solutions of a combinatorial optimization problem is mapped onto the set
of all possible states of the network. The network is normally composed of one-layered
neurons with fully weighted connections. An energy function is defined over the set of
all possible states and it depends on the weights of the connections of the network. The
neural networks algorithm iterates towards a ground state of minimum energy that corre-
sponds to an optimal solution satisfying all constraints of the combinatorial optimization
problem. Due to the feedback characteristics, the Hopfield-Tank model converges to a
local minimum. Various modifications have been proposed to alleviate this problem such
as the incorporations of simulated annealing in a Boltzmann machine and other stochastic
models. The second approach is based on competitive neural networks and includes the
Kohonen self-organizing network and the deformable (elastic) nets in that neurons are
allowed to compete to become active under certain conditions. The aim of the Kohonen
model is to find a mapping from a high dimensional input space onto a lower dimensional
discrete lattice (usually two) of formal neurons. The mapping tries to reflect the topologi-
cal neighbourhood relationships among the inputs in the arrangement of the corresponding
neurons in the lattice. The above two approaches suggest neural networks as an alternative
for solving certain optimization problems as compared to classical optimization techniques
and other novel approaches.

3.4.4 simulated annealing

The simulated annealing (SA) metaheuristic has its origins in statistical physics. The
interest in using SA for combinatorial optimization problems began in the early 1980s
with the work of [58] and [7]. The SA metaheuristic performs a stochastic search of the
neighbourhood space. Modifications to the current solution that increase the value of
the objective function are allowed (for a minimisation problem) as opposed to classical
descent methods where only modifications that decrease the objective value are allowed.
More precisely, a modification that reduces the objective value is always accepted, while a
modification that increase the objective value by ∆ is accepted with a probability exp(∆

T),
where T is the temperature control parameter. At a high temperature, the probability
of accepting an increase to the objective value is high. This probability gets lower as the
temperature is decreased. Typically, the SA algorithm starts with a high temperature to
perform a coarse search of the solution space. The temperature is then gradually reduced

12

Gwendia ANR-06-MDCA-009

to focus on a specific region. The initial temperature value of T, the number of iterations
to be performed at each temperature, the cooling (reduction) rate of the temperature
value and the stopping criterion are determined by the so-called SA cooling schedule.

3.4.5 Tabu search

Tabu search (TS) ideas were introduced by [18] and [28]. The TS method is a metaheuristic
which shares with the SA algorithm the ability to guide the local search descent method to
avoid bad local optima. It uses, however, a deterministic rather than stochastic acceptance
criterion. At each iteration, TS moves to the best admissible neighbour, even if this causes
the objective function to deteriorate. This admission criterion may lead to cycling, i.e.,
returning to solutions already visited. To avoid cycling, attributes of accepted solutions
are stored in a tabu list and declared tabu for a number of iterations. A neighbouring
solution is considered forbidden and deemed not admissible if it has attributes on the
tabu list. Storing attributes rather than the complete solutions may cause some non-tabu
solutions to be wrongly prevented and aspiration criteria are normally used to correct
such errors. To produce good results, intensification and diversification strategies are also
employed. The former strategy is used to perform a thorough search in good regions while
the latter strategy is attempted to consider solutions in a broad area of the search. For
more recent developments, refer to [23, 20].

4 Scheduling Workflows

Even if workflows can be modeled as DAGs, their scheduling on actual Grid infrastructure
relies on the coordination of different heuristics taking into account its heterogeneity, its
dynamicity and the data management. In this section, we survey papers dealing with the
scheduling of workflows on Grids and the way they are implemented in given workflow
middlewares.

4.1 Scheduling with Constraints

Many workflow applications require some quality-of-service assurance depending wheter
they need to be executed before a specific time, cost less than a given amount of budget
or use less than a given amount of MBytes. In [69], several such algorithms are described.

4.1.1 Storage constraints

[52]

4.1.2 Budget constraints

In [68], ...
In [59], ...

4.1.3 Deadline constraints

[48]

13

Gwendia ANR-06-MDCA-009

4.2 Scheduling strategies of specific Workflow systems

4.2.1 Pegasus

Pegasus [49] uses workflow partionning.

4.2.2 Askalon

The Askalon system [2, 13] is built upon a set of components for the development and
execution of workflow application over the Grid. The Resource Manager is responsible
for negociation, reservation, and allocation of resource, as well as automatic deployment
of services. The Scheduler is a service that determines effective mappings of single and
multiple workflow applications over the Grid using graph based heuristics and optimization
alogorithms

The Askalon system uses three algorithms [65] to schedule workflows represented as
DAGs (written in the AGWL language): HEFT, a genetic algorithm and a Myopic algo-
rithm. This last algorithm is just a just-in-time scheduling strategy using local decisions.
The conclusions of the authors is that HEFT performs better than the Myopic algorithm.
The genetic algorithm can be computationally extensive. An other conclusion is that in-
cremental workflow scheduling does not give the best performance and moreover, it tends
to produce less efficient results for unbalanced workflows. Full-graph scheduling produces
the best results.

4.2.3 Gridflow

Gridflow [27]

4.2.4 GrADS

GrADS [26]

5 Conclusion

References

[1] Ishfaq Ahmad and Yu-Kwong Kwok. A new approach to scheduling parallel programs
using task duplication. In ICPP, pages 47–51, 1994.

[2] ASKALON. http://www.askalon.org/.

[3] Rashmi Bajaj and Dharma P. Agrawal. Improving scheduling of tasks in a heteroge-
neous environment. IEEE Trans. Parallel Distrib. Syst., 15(2):107–118, 2004.

[4] Henri Bal and Matthew Haines. Approaches for Integrating Task and Data Paral-
lelism. IEEE Concurrency, 6(3):74–84, Jul-Sep 1998.

[5] Jeff Marquis Behrooz Shirazi, Hsing-Bung Chen. Comparative study of task duplica-
tion static scheduling versus clustering and non-clustering techniques. Concurrency:
Practice and Experience, 7(5):371–389, 1995.

[6] C. Roucairol C. Rego. A parallel tabu search algorithm using ejection chains for the
vehicle routing problem. Metaheuristics. Theory and Applications, 1996.

14

http://www.askalon.org/

Gwendia ANR-06-MDCA-009

Figure 3: Askalon scheduling architecture

15

Gwendia ANR-06-MDCA-009

[7] V. Cerny. A thermodynamical approach to the travelling salesman problem. an ef-
ficient simulated annealing algorithm. Journal of Optimization Theory and Applica-
tions, 45:41, 1985.

[8] Y.-C. Chung and S. Ranka. Applications and performance analysis of a compile-time
optimization approach for list scheduling algorithms on distributed memory multi-
processors. In Supercomputing ’92: Proceedings of the 1992 ACM/IEEE conference
on Supercomputing, pages 512–521, Los Alamitos, CA, USA, 1992. IEEE Computer
Society Press.

[9] J-Y. Colin and P. Chrtienne. C.p.m. scheduling with small communication delays
and task duplication. Operations Research, 39(3):680–684, 1991.

[10] R. Dechter D. Fost. Dead-end driven learning. In Proceedings of the 12th National
Conference for Artificial Intelligence (AAAI94), page 294, 1994.

[11] Fangpeng Dong and Selim G. Akl. Scheduling algorithms for grid computing: State
of the art and open problems. Technical Report 2006-504, Queen’s University, School
of Computing, January 2006.

[12] I.H. Osman F. Glover, E. Pesch. Efficient facility layout planning. technical report,
1995.

[13] T. Fahringer, R. Prodan, Rubing Duan, F. Nerieri, S. Podlipnig, Jun Qin, M. Sid-
diqui, Hong-Linh Truong, A. Villazon, and M. Wieczorek. Askalon: A grid applica-
tion development and computing environment. In GRID ’05: Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, pages 122–131, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[14] T. Feo and M. Resende. Greedy randomized adaptive search procedures, 1995.

[15] D.B. Fogel. A comparison of evolutionary programming and genetic algorithms on
selected constrained optimization problems. Simulation, 64:397, 1995.

[16] A. Gerasoulis and T. Yang. A Comparison of Clustering Heuristics for Scheduling
Directed Acyclic Graphs onto Multiprocessors. Parallel and Distributed Computing,,
16(4):276–291, 1992.

[17] R.S. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25, 1993.

[18] F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533, 1986.

[19] F. Glover. New ejection chain and alternating path methods for traveling salesman
problems. Operations Research and Computer Science. New Developments in Their
Interfaces, 1992.

[20] F. Glover. Tabu search. improved solution alternatives. Mathematical Programming
State of the Art, 1994.

[21] F. Glover. Scatter search and star-paths. beyond the genetic metaphor. OR Spektrum,
17:125, 1995.

16

Gwendia ANR-06-MDCA-009

[22] F. Glover. Multilevel tabu search and embedded search neighbourhoods for the trav-
elling salesman problem. ORSA Journal on Computing, 1996.

[23] Fred Glover. Tabu search fundamentals and uses. working paper, 1995.

[24] Fred Glover. Tabu thresholding. improved search by non-monotonic trajectories.
ORSA journal on computing, 7:426, 1995.

[25] Fred Glover and Fred Laguna. Tabu Search. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

[26] GrADS. http://www.hipersoft.rice.edu/grads/.

[27] Gridflow. http://gridflow.ca/.

[28] P. Hansen. Future paths for integer programming and links to artificial intelligence.
In Congress on Numerical Methods in Combinatorial Optimization, Capri, 1986.

[29] N. Christofides I.H. Osman. Capacitated clustering problems by hybrid simulated
annealing and tabu search. International Transactions in Operational Research, 1:317,
1994.

[30] S. Salhi I.H. Osman. Local search strategies for the mix fleet vehicle routing problem.
Local search strategies for the mix fleet vehicle routing problem, 1996.

[31] K. Darby-Dowman J. Little. The significance of constraint logic programming to
operational research. Operational Research Tutorial Papers, 1995.

[32] Tank J.J. Hopfield, D. Neural computations of decisions in optimization problems.
Biological Cybernetics, 52:141, 1985.

[33] Tank J.J. Hopfield, D. Computing with neural circuits. a model. Science, 233:624,
1986.

[34] James P. Kelly. Meta-Heuristics: Theory and Applications. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1996.

[35] S.J. Kim and J.C. Browne. A general approach to mapping of parallel computation
upon multiprocessor architectures. In Int’l Conf. Parallel Processing, volume 2, pages
1–8, 1988.

[36] Boontee Kruatrachue and Ted Lewis. Grain size determination for parallel processing.
IEEE Softw., 5(1):23–32, 1988.

[37] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471, 1999.

[38] Joseph Y-T Leung, editor. Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. Chapman & Hall/CRC, 2004.

[39] J. Liou and M. Palis. An efficient task clustering heuristic for scheduling dags on
multiprocessors, 1996.

17

http://www.hipersoft.rice.edu/grads/
http://gridflow.ca/

Gwendia ANR-06-MDCA-009

[40] D.S.L. Wei M.A. Palis, J.-C. Liou. Task clustering and scheduling for distributed
memory parallel architectures. IEEE Trans. Parallel and Distributed Systems,
7(1):46–55, 1996.

[41] K. Steiglitz M.D. Dikaiakos, A. Rogers. A comparative study of heuristics for mapping
parallel algorithms to message passing multiprocessors. technical report, 1994.

[42] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, Cambridge,
1996.

[43] Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz, editors. Grid resource man-
agement: state of the art and future trends. Kluwer Academic Publishers, Norwell,
MA, USA, 2004.

[44] I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problem. Annals of operations research, 41(4):421–451, 1993.

[45] I.H. Osman. Heuristics for the generalized assignment problem. simulated annealing
and tabu search approaches. OR Spektrum, 17:211, 1995.

[46] I.H. Osman. An introduction to metaheuristics. Operational Research Tutorial paper,
1995.

[47] Christos H. Papadimitriou and Mihalis Yannakakis. Towards an architecture-
independent analysis of parallel algorithms. SIAM Journal on Computing, 19(2):322–
328, 1990.

[48] Y. Patel, A.S. McGough, and J. Darlington. QoS Support For Workflows In a Volatile
Grid. In Grid Computing Conference, pages 64–71, 2006.

[49] PEGASUS. http://pegasus.isi.edu/.

[50] P. Posser. Hybrid algorithms for the constraint satisfaction problem. Computational
Intelligence, 9:268, 1993.

[51] J. Pearl R. Dechter. Network based heursitics for the constraint satisfaction problems.
Artifical Intelligence, 34:1, 1988.

[52] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Black-
burn, D. Meyers, and M. Samidi. Scheduling Data-Intensive Workflows onto Storage-
Constrained Distributed Resources. In Seventh IEEE International Symposium on
Cluster Computing and the Grid (CCGRID’07). IEEE, 2007.

[53] S. Ramaswany. Simultaneous Exploitation of Task and Data Parallelism in Regular
Scientific Applications. PhD thesis, University of Illinois at Urbana-Champaign, 1996.

[54] Samantha Ranaweera and Dharma P. Agrawal. A scalable task duplication based
scheduling algorithm for heterogeneous systems. In ICPP ’00: Proceedings of the
Proceedings of the 2000 International Conference on Parallel Processing, page 383,
Washington, DC, USA, 2000. IEEE Computer Society.

[55] Samantha Ranaweera and Dharma P. Agrawal. A task duplication based scheduling
algorithm for heterogeneous systems. In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS 2000), Cancun, Mexico, May 2000.

18

http://pegasus.isi.edu/

Gwendia ANR-06-MDCA-009

[56] T. Rauber and G. Rnger. Scheduling of data parallel modules for scientific computing.
In SIAM, editor, Proceedings of Ninth SIAM Conference on Parallel Processing for
Scientific Computing (PP99), San Antonio, Texas, March 1999.

[57] C.R. Reeves. Modern Heuristic Techniques for Combinatorial Problems. John Wiley
& Sons, New York, NY., 1995.

[58] P.M. Vecchi S. Kirkpatrick, C.D. Gelatt. Optimization by simulated annealing. Sci-
ence, 220:671, 1983.

[59] Rizos Sakellariou, Henan Zhao, Eleni Tsiakkouri, and Marios Dikaiakos. Scheduling
workflows with budget constraints. Integrated research in Grid Computing, Gorlatch
Sergei, Danelutto Morco (Eds.), 2006.

[60] R. Sharda. Neural networdl for the ms/or analyst. an application bibliography. In-
terfaces, 24:116, 1994.

[61] Robert H. Storer, S. David Wu, and Renzo Vaccari. New search spaces for sequencing
problems with application to job shop scheduling. Manage. Sci., 38(10):1495–1509,
1992.

[62] A. Gerasoulis T. Yang. Dsc: Scheduling parallel tasks on an unbounded number
of processors. EEE Transactions on Parallel and Distributed Systems, 5(9):951–967,
1994.

[63] C.W.A. Tsao T.C. Hu, A.B. Khang. A new class of non-monotonic threshold accepting
methods. ORSA journal on computing, 7:417, 1995.

[64] EP.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1993.

[65] Marek Wieczorek, Radu Prodan, and Thomas Fahringer. Scheduling of scientific
workflows in the askalon grid environment. SIGMOD Rec., 34(3):56–62, 2005.

[66] Tao Yang. Scheduling and code generation for parallel architectures. PhD thesis,
Rutgers University, New Brunswick, NJ, USA, 1993.

[67] J. Yu and R. Buyya. A taxonomy of workflow management systems for grid comput-
ing, 2005.

[68] Jia Yu and Rajkumar Buyya. Scheduling scientific workflow applications with dead-
line and budget constraints using genetic algorithms. Scientific Programming, 14(3-
4):217–230, 2006.

[69] Jia Yu and Rajkumar Buyya. Workflow scheduling algorithms for grid comput-
ing. Technical Report GRIDS-TR-2007-10, Grid Computing and Distributed Systems
Laboratory, The University of Melbourne, Australia, May 2007.

19

	darkblue Introduction
	darkblue Problem modelisation
	darkblue DAG model
	darkblue Ressources model

	darkblue Scheduling heuristics
	darkblue List scheduling
	darkblue Clustering heuristics
	darkblue Duplication based
	darkblue Metaheuristics
	darkblue Constraint Logic Programming
	darkblue Natural evolutionary computation
	darkblue Neural networks
	darkblue simulated annealing
	darkblue Tabu search

	darkblue Scheduling Workflows
	darkblue Scheduling with Constraints
	darkblue Storage constraints
	darkblue Budget constraints
	darkblue Deadline constraints

	darkblue Scheduling strategies of specific Workflow systems
	darkblue Pegasus
	darkblue Askalon
	darkblue Gridflow
	darkblue GrADS

	darkblue Conclusion

