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Abstract
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1 Introduction

1.1 Motivations

Workflow languages play an important role in the workflows design process given that
they constrain the kind of computational pattern that can be represented. As a matter
of fact, a very large number of workflow languages exist today, despite the very general
adoption of C-like traditional programming languages, exhibiting the variety of needs for
workflow-based applications. In the context of grid computing, this variety is exacerbated
by the complexity of intrinsically parallel programming constructs. In deliverable L1.1 [9],
we have proposed a classification of existing workflow languages emphasizing on expres-
siveness. This classification significantly differs from earlier taxonomies related either to
the properties of workflow engine enactors [11] or the language abstraction level [2]. In our
view, workflow languages and workflow enactors are more tightly bound than first appear.
At the notable exception of BPEL, most languages are associated to a single enactor.
Language have often be specialized for specific needs. They propose control structures
that are not easily implementable in a different language and as a consequence, there
exists few bridges between languages. Among workflow engines, Kepler is notorious for
enabling different models of computations inside a single workflow [3, 1]. Different Kepler
directors implement different workflow enactment strategies based on very heterogeneous
languages (including data flows, process networks, discrete time event...). However, the
different directors are completely independent and if they can be combined hierarchically
using sub-workflows with different models of computation, each workflow level uses an
homogeneous model of computation.

The GWENDIA project specifically focuses on coarse grain data-intensive scientific ap-
plications for which grid computing can improve performances dramatically. In this con-
text, L1.1 [9] identifies two different approaches that are promising:

e data flows enable the transparent description of massively data-parallel applications;

e Direct Acyclic Graphs (DAGs) enable the low level description of the computing
schedule.

While data flows are more geared towards language expressivity, DAGs are more effective
for achieving high performance. In the former case, users are able to describe very complex
data flows in a compact and service-oriented framework while in the later case parallelism
and all inter-dependencies are statically described in a potentially very large size graph.
Although both approaches are not a priori exclusive (DAGs are often automatically gen-
erated from a higher level description languages), DAGs impose some constraints (acyclic
nature of graphs in particular) that make difficult or even impossible the automatic in-
stantiation of every data flows into a DAG. In a service-oriented data flow approach, the
computing agents (processors) are defined independently from the data sets to be pro-
cessed. Conversely, a DAG is composed of tasks corresponding to the instantiation of
processors and the the data set they process. In the context of GWENDIA, both a data
flow oriented language (Scufl, see section 2.1) and a DAG-oriented language (MA-DAG,
see section 2.2) are considered, aiming at achieving both abstract representation and high
performance. In the reminder of the document we try to conciliate those partially con-
flicting approaches.

The objective of this technical document is to propose a GWENDIA workflow language.
This proposition is based on an enrichment of existing languages. It aims at achieving two



sWENDIA ANR-06-MDCA-009

different goals:

e to ease the description of the complex application data flow use cases addressed
within the project from a user point of view; and

e to ensure good performances and grid resources usage.

As will be discussed further, compromises have to be adopted to reach both targets. The
language that we propose is thus a high level abstraction that can be instantiated in
different execution formats.

In the rest of this paper, the Scufl and the MA-DAG languages are first introduced
(section 2). The application use case requirements are analyzed in light of these languages
(section 3). Languages extensions are proposed to match the needs expressed (section 4).
Finally, a formal representation of the GWENDIA language, integrating all elements is
described in section 5.

2 Workflow languages considered

2.1 Scufl data flow-oriented language

Scufl was introduced within the myGrid project! to represent data flows enacted through
the Taverna workflow engine [7]. Scufl is one of the first grid-oriented data flow language.
It is represented as an XML document. One flaw of Scufl is that it is internally used for
the needs of the Taverna workflow engine but that the language has never been prop-
erly defined nor documented. The basic semantic of Scufl as been recently formalized
though [10]. As we will see in section 4.2, this formalization is still an early attempt to
clarify Scufl and the current implementation of Taverna does not fully comply with it.

The future of Scufl is uncertain as it is currently undergoing massive and undocumented
transformations in the context of Taverna2 development. It is too early to comment on
the completely new Taverna2 data flow language as it has not been released yet and it
is unclear whether it will ever be documented. However, the first information available
indicate that it is totally uncorrelated to Scufl (only a Scufl converter will be provided for
handling legacy workflows) and that it is fully user customizable (the invocation behavior
of each workflow processor can be completely revised by the user). In this context, the
semantic of the language can hardly ever be defined: each workflow instance will carry a
specific invocation semantic depending on the plug-ins redefined by the user. We believe
that in its desire to achieve maximal flexibility, Taverna2 has adopted a risky approach. In
a short term, Taverna2 workflows can become unreadable to any user without analyzing
the workflow-specific plug-ins code. We disagree with this approach that brings to much
confusion on the sake of flexibility and we believe that a proper language, with a clear
semantics need to be defined.

Scufl is a simple graph-oriented language than is defined through few XML tags: pro-
cessors, data links, coordination constraints and iteration strategies.

Processors. In Scufl, computing activities are named processors. For convenience there
exist different processor kinds. Without loss of generality we will focus on java internal
processors which are executing predefined java-coded operations at the level of the work-
flow engine, beanshell processors which are interpreting java user code locally and web
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service processors which are invoking standard web services. In a Scufl workflow, proces-
sors may fire multiple times depending on the data items that they receive to process. The
processor XML tag can contain many different tags that specify the processor behavior.
For example, beanshell processors have a specific tag to hold the java code to be inter-
preted, web service processor have another tag to define the service WSDL description
document endpoint, etc. A commonality to all processors is that they define named input
and output ports. Ports are buffers that hold either data items sent to the processor for
computation or data items produced by the processor.

Data links. An output port of a processors Py and an input port of a subsequent
processor P; are connected through links. Data links are by far the most widely used in
Taverna data flows: a data link expresses a data dependency between Py and P;. P; can
only be enacted once it received one data item or more into all its input ports through
data links. When exactly P fires is determined by the processor iteration strategy defined
below.

Coordination constraints. Coordination constraints are a specific kind of processor
links that do not require any data to be exchanged between connected processors. The
target processor of a coordination constraint can only fire once the source processor has
completely executed, i.e. once it has fired for all data sets to process and it is certain that
no further firing will be needed in the execution of this workflow. It is to be noted that
cycles of linked processors may exist in Scufl. However, the behavior of the Taverna enactor
in presence of cycles is hill defined. A clear semantic for data link cycles can be defined
though, as discussed in section 4. Control links cannot appear within a cycle though given
that the complete execution of a processor within a cycle cannot be determined.

Iteration strategies. Despite its apparent simplicity, the Scufl language provides a rich
data flow semantic through iteration strategies. They define how many times a processor
fires when it receives input data on two or more input ports. There are two basic iteration
strategies when considering a pair of input ports pg and p; of processor P: they are
known as dot and cross product respectively. In the case of a dot product, the processor
will fire once for each pair of input data items received on py and p;. For example if pg
receives data items a and b, and p; receives data items ¢ and d, then the processor will fire
two times, to produce P(a,c) and P(b,d). The dot product corresponds to a traditional
one-to-one execution semantic. In case of parallel execution, the order of data items
processed may be shuffled and care as to be taken by the workflow manager to respect
the user expected semantics of computations. The cross product corresponds to an all-
to-all execution semantics and in the former example, 4 data items would be produced:
P(a,c), P(a,d), P(b,c) and P(b,d). By combining dot and cross produces in an arithmetic
expression, complex iteration strategies can be defined for processors with more than two
input ports.

List data sequences. An important aspect of the Taverna workflow engine is to support
lists of consecutive data items and lists of embedded list semantics. Lists considerably
enrich the semantic of Taverna and are important for implementing the GWENDIA use cases
as described in section 3. However, lists are not clearly part of the Scufl workflow language
but rather a consequence of the data flow strategy implemented in Taverna: only the
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beanshell processor type properly handles lists although there is no reason why lists should
be related to a specific processor kind. It is a flaw in Taverna design that we propose to fix
in section 4 by extending the language to explicitly support lists. With lists, several data
items can be logically considered as a single group of data. Some processors may process
a complete list in a single invocation while others may process list items individually
depending on the semantic of the processor. For instance, an arithmetic “square” operation
may be invoked on individual integers while a statistical “mean operation” will be invoked
on a list if integers. Embedded lists enable multiple level data sets management and
provide support for synchronization of data items before processor invocation.

Example. The following XML extract gives an example of a Scufl workflow definition.
The workflow is composed of 2 image sources, 1 beanshell processor and 1 output (sink).
The processor in this example is an image registration processor which computes from a
pair of input images the geometrical transformation needed to align the floating image
onto the fixed image spacial frame. The 2 processor inputs are correlated through a dot
product iteration strategy. Three data links define the workflow graph.

<s:scufl xmlns:s="http://org.embl.ebi.escience/xscufl/0.1lalpha" version="0.2" log="0">

<s:source name="FixedImage" />
<s:source name="FloatingImage" />

<s:processor name="registration">
<s:beanshell>
<s:scriptvalue>...</s:scriptvalue>
<s:beanshellinputlist>
<s:beanshellinput s:syntactictype="’text/plain’">ref</s:beanshellinput>
<s:beanshellinput s:syntactictype="’text/plain’">floating</s:beanshellinput>
</s:beanshellinputlist>
<s:iterationstrategy>
<i:dot>
<i:iterator name="ref"/>
<i:iterator name="floating"/>
</i:dot>
</s:iterationstrategy>
<s:beanshelloutputlist>
<s:beanshelloutput s:syntactictype="’text/plain’">matrix</s:beanshelloutput>
</s:beanshelloutputlist>
<s:dependencies s:classloader="iteration" />
</s:beanshell>
</s:processor>

<s:sink name="Transformation" />

<s:link source="FixedImage" sink="registration:ref" />
<s:link source="FloatingImage" sink="registration:floating" />
<s:link source="registration:res" sink="Transformation" />

</s:scufl>

2.2 MA-DAG task-oriented language

The MA-DAG language describes a directed acyclic graph of tasks represented as an XML
document. This language is part of the DIET project? and is used to execute workflows on
grids managed by the DIET grid middleware. The semantics of this language is simple as
it only describes a set of tasks (called nodes in the language) and either data flows between
them or simple dependency relationships. It does not contain any DIET-specific concept

*DIET Crid Middleware projecthttp://graal.ens-1lyon.fr/~diet/
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so the structure and syntax of the language is relatively generic. It does not currently
manage lists of data items so the number of inputs and outputs of each task must be
statically defined.

XML Document structure. The toplevel element is a <dag> element which contains
<node> elements. Nodes correspond to executable tasks with defined input data which
will be submitted to the grid middleware for mapping to a ressource and execution. The
type of task to execute is specified by the path attribute of each node which contains the
name of a service available on the grid. The precedence relationships between nodes in
the DAGs are defined either by data flows (an input port of a node can have a source port
linked to it, or an output port can have a sink port linked to it), or by simple control flow
using the <prec> element that contains the id of another node.

Node description. A <node> element is composed of arguments, input ports, output
ports, in-out ports and eventually preceding relationships. It must be uniquely identified
within the DAG by its id attribute and contains the name of the service that will be used
for execution on the grid (path attribute). Each port of the node (elements <arg>, <in>,
<inOut> or <out>) must have a unique name attribute within the node and a defined type
attribute which should contain one of the data types understood by the grid middleware.
Some additionnal attributes are used only for the matrix type (base_type, nb_rows, nb_cols
and matrix_order). The syntax of source or sink attributes is: node_id#port_name.

Document DTD. The current version of the DTD for the MA-DAG language is the
following:

<!ELEMENT dag (nodex*)>
<!ELEMENT node (arg#, inx, inOut*, out*, precx)>
<!ATTLIST node
id ID #REQUIRED
path CDATA #REQUIRED>
<!ELEMENT arg EMPTY>
<!ATTLIST arg
name CDATA #REQUIRED
type CDATA #REQUIRED
value CDATA #REQUIRED
base_type CDATA #IMPLIED
nb_rows CDATA #IMPLIED
nb_cols CDATA #IMPLIED
matrix_order CDATA #IMPLIED>
<!ELEMENT in EMPTY>
<VATTLIST in
name CDATA #REQUIRED
type CDATA #REQUIRED
source CDATA #IMPLIED
base_type CDATA #IMPLIED
nb_rows CDATA #IMPLIED
nb_cols CDATA #IMPLIED
matrix_order CDATA #IMPLIED>
<!ELEMENT inOut EMPTY>
<VATTLIST inOut
name CDATA #REQUIRED
type CDATA #REQUIRED
source CDATA #IMPLIED
base_type CDATA #IMPLIED
nb_rows CDATA #IMPLIED
nb_cols CDATA #IMPLIED
matrix_order CDATA #IMPLIED>
<!ELEMENT out EMPTY>
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<!'ATTLIST out
name CDATA #REQUIRED
type CDATA #REQUIRED
sink CDATA #IMPLIED
base_type CDATA #IMPLIED
nb_rows CDATA #IMPLIED
nb_cols CDATA #IMPLIED
matrix_order CDATA #IMPLIED>
<!ELEMENT prec EMPTY>
<!IATTLIST prec
id CDATA #REQUIRED>

Example. The following XML document is an example of MA-DAG workflow. It is
composed of 3 different types of tasks: first the “dockingparameters” task takes as input
one parameters file and an additional integer value. It produces two files that are processed
in parallel by two instances (ie two tasks) of the “docking” service. These tasks each
produce one output value. The outputs are finally processed by a single “dockingmerge”
task. The precedence relationships are here defined by the data flows so there is no <prec>
element used.

<dag>

<node id="A" path="dockingparameters">
<arg name="argl" type="DIET_LONGINT" value="2000" />
<arg name="arg2" type="DIET_FILE" value="parameters.dat" />
<out name="outl" type="DIET_FILE" />
<out name="out2" type="DIET_FILE" />

</node>

<node id="B1" path="docking">
<arg name="argl" type="DIET_LONGINT" value="4000" />
<in name="arg2" source="taskl#outl" type="DIET_FILE" />
<out name="outl" type="DIET_LONGINT" />

</node>

<node id="B2" path="docking">
<arg name="argl" type="DIET_LONGINT" value="4100" />
<in name="arg2" source="taskl#out2" type="DIET_FILE" />
<out name="outl" type="DIET_LONGINT" />

</node>

<node id="C" path="dockingmerge">
<arg name="argl" type="DIET_LONGINT" value="3000" />
<in name="arg2" source="Bl#outl" type="DIET_LONGINT" />
<in name="arg3" source="B2#outl" type="DIET_LONGINT" />
<out name="outl" type="DIET_LONGINT" />

</node>

</dag>

3 Use cases requirement analysis

3.1 Cardiac data flow

The GWENDIA data flows exhibit complex data flows as described in detail in technical
document [4]. As an illustration, a simplified data flow extracted from the cardiac appli-
cation is given in figure 1. The data source is the Patient ID processor which provides
patient identifiers. For the sake of simplicity, the data flow is illustrated for a single pa-
tient “P” but the application usually applies to a patients database. For each patient, a
temporal sequence of 3D images covering the beating heart cycle is analyzed. Each 3D
volume is composed of 2D slices. Depending on the processor, the data may be processed
as independent 2D slices, as 3D volumes or even as a complete 4D sequence. The data
is stored on disk as individual 2D slices in DICOM format. When the “DICOM reader”



GWENDIA ANR-06-MDCA-009

processor is invoked, it returns the list of files associated to the input patient. In our
example, the 4D image is composed of 2 volumes (green and red), each one being com-
posed of 4 2D slices. Given that the processor is invoked only once in our example, it will
return a single output containing all slices to be processed. The “Image crop” subsequent
processor processed slices individually: it has to be invoked 8 times in this case (possibly
in parallel), hence the compound output of “DICOM reader” has to be disassembled prior
to the processor invocation. Note that nothing guarantees the ordered processing of the
slices and the cropped slices resulting from the processor activity may be produced in a
completely different order than the input slices. The subsequent “Interpolation” proces-
sor needs to process complete volumes. Hence, slices have to be reordered and grouped
prior to the processor invocations (2 times in this case). “Interpolation” produce volumes
that will be consumed by the “Pyramid decomposition” processor as is. This processing
produce several resolution 3D images for each input volume however: as for the DICOM
reader, the outputs are compound structures. Finally, the gradient computing processed
the different resolution volumes individually.

Patient ID

<patient P>
DICOM reader

{ Interpolation

Pyramid
decomposition
i 5 e

e

4 -

h §
Gradient
computing

Figure 1: Simplified cardiac data flow

This example demonstrates that data flow transformations are needed between pro-
cessors invocations: the processors have to expose the data sets that they provide and
the workflow engine has to handle the data flow manipulation as required. There are two
kinds of data flow transformations involved in this example:

e Data sets depth. Data links are transporting data items that may be grouped
or conversely groups of data items than need to be flattened. For instance, the
output of the “DICOM reader” has to be interpreted as a 2-dimensional list of slices,
that needs to be flattened prior to “Image crop” invocation. Conversely, the slices
resulting from “Image crop” processing have to be grouped in a correct order prior
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to “Interpolation” invocation. These operations may involve any depth flattening or
grouping.

e Data formats. The data is manipulated in different formats. For instance, the
“Interpolation processor” interprets groups of 2D input slices (encoded in the 2D
DICOM file format) as volumes and produces 3D images (encoded in the 3D HDR
image format). Although semantically equivalent, these two formats completely
differ and a transformation takes place within the processor.

The format transformation is completely domain dependent and is not handled at the
workflow management level. The workflow engine is only exposed to the depth of the
data set and make no assumption on the correlation between processors input and output
formats.

It is to be noted that the data items grouping operation corresponds to a partial data
synchronization operation that was identified in deliverable L1.1 [9].

3.2 Drug discovery data flow

The drug discovery data flow is much simpler but it causes a serious scalability problems:
from hundreds of thousands to millions of computing tasks can be triggered almost instan-
taneously by this application. The workflow engine needs to regulate the amount of tasks
simultaneously processed to avoid overloading the workflow host. This can be achieved
either by an internal task submission policy of the workflow engine or a transformation of
the workflow in a regulatory loop which maintains a constant number of tasks execution
on the grid infrastructure.

Another particularity of the drug discovery workflow is to involve a thresholding op-
eration. The threshold value can be either determined statically, from experience, or
dynamically, as a percentage of the best results computed.

3.3 Language properties analysis

As illustrated in the cardiac application example, the workflow engine is exposed to the
depth of the data flow items. In Scufl, there is a partial support for expressing multi-
depth data items to be transferred on the data links: the beanshell processors define
different cardinality input/output ports expressing the expected input/output depth of
the items received/processed. The data items are mapped to java objects manipulated
in the beanshells code (ArrayList objects are used to represent groups of data items).
When the depths of an output port and an input port it is connected to through a data
link do not match, the Taverna engine performs the necessary flattening or grouping
operations. Unfortunately, this feature is restricted to beanshell processors. In particular
it is not available for web services that are used for enacting application on the grid
infrastructure. A hybrid solution could be implemented using web service grid processor
and intermediate beanshell processors for handling the data flow. Although this solution
provides the desired functionality for the cardiac application, it is heavy, counter-intuitive
and it makes workflow maintenance and evolution unnecessarily tiresome.

With DAGs, the data flow has to be explicitly specified in the workflow graph: there
are as many instantiation of a workflow processor into a DAG node as times the processor
needs to be invoked. This strategy can only be implemented with static graph which size
is completely known. However in the cardiac application example, the number of volumes
in for each patient varies. A specific DAG would thus be necessary for each patient.
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The drug discovery application introduces the extra need for control structures such
as loops and conditionals. Loops can be represented in a data flow, as will be discussed
in section 4.4. DAGs can only represent loops by unfolding the loop iterations sequen-
tially. As a consequence, only bounded loops with a known number of iteration can be
treated statically. Conditionals can be represented in data flows as filters. DAGs have no
conditional expression.

4 Language extensions

This section introduces several workflow language extensions that are desirable for the
implementation of the GWENDIA application use cases discussed above. The result is a
data flow language with embedded control structure. The next section will formalize the
GWENDIA language.

4.1 Typed data items

The workflow input/output ports need to be typed in order to ensure the workflow co-
herence. The MA-DAG support primitive types handling. List types will be added as
discussed below. The Scufl language is not typed. The MOTEUR, workflow engine can
exploit web-services argument types defined in the WSDL document to validate the co-
herence of a flow of web-services. The type information will be integrated to the workflow
language so that it applies to all processor kinds. Mapping between workflow-defined types
and specific service types (e.g. web service XSD types) will be needed.

4.2 Lists management

As discussed previously, grouping data into different depth lists enables the processing of
complex data flows. Moving from data items to lists of data items is very intuitive in
a data flow framework. A stream of data items flowing on a data link from a data flow
may be interpreted as a list. In fact, lists processing is completely integrated in functional
languages such as Haskell®. As Ludisher and Altintas outlined, data flows are very similar
to functional languages [5]. The invocation semantic of a processor receiving an input list
corresponds to a map of the processor function to the list items. An extension of Kepler was
proposed, based on the map operator. Similarly, the Taverna workflow engine is adopting
a fully functional approach, enriched by a multi-depths lists manipulation semantic when
considering beanshell processors. However, it is to be noted that none of these earlier
approach fully comply with the cardiac workflow requirements:

e The functional languages have been studied and formalized in depth. Although
their execution order is not completely deterministic and some language interpreters
support parallelism, the regular sequential flow of codes is hardly as expressive as
workflow graphs to represent parallelism. In addition, iteration strategies are not
natively supported and require complex implementations.

e Kepler can manipulate lists but it does not include iteration strategies which con-
siderably reduces the its data flow director expressiveness.

Shttp://haskell.org
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e Taverna only implements lists management for beanshell processor. This capability
is not really part of the Scufl language. Moreover, Taverna 1 is not grid-interfaced
and it has strong limitations concerning the data parallel execution of its data flows.

We aim at proposing a list operations semantic that is compatible with fully asyn-
chronous execution of data flows and well integrated into the GWENDIA workflow lan-
guage.

4.2.1 Lists management semantic

A data flow lists management semantic is defined as follows:

e Data links are transporting lists: all items sent from a same workflow data source
or a processor output port are known to belong to a same list. It corresponds to a
top level list that may contain items themselves represented as lists.

e Processors define the expected list depth on each of their input or output port.

e The depth m of an output and the depth n on an input port it is connected to
may differ. If m > n then the list is flattened by m — n levels before the items are
delivered to the target port. If m < n then the items are collected by n — m level
lists before they are delivered. Note that if the items produced in the output port
cannot be collected, because they are not originally belonging to a high level enough
list, the data link is not valid.

e The workflow engine ensures the reordering of list items when they are collected in
a list.

As outlined in [5], in a data flow the entities transferred through the data links remain
individual data items. It is sufficient to transfer a special “end of list” data tag that is
interpreted by the workflow engine to detect the complete availability of a list in an input
port. In an asynchronous implementation, the list items also need to be numbered to
recover their correct ordering when collecting items in a list.

The end of list tags are also convenient to detect computation termination. Each
output port delivers a list of produced items. In a completely asynchronous execution, a
processor can produce results while it is still expecting further inputs to process. It is only
when all input end of list tags have been received that the processor can in turn deliver
an end of list tag to the subsequent processors. Figure 2 illustrates the data flow involved
around the “DICOM reader” processor of the cardiac application (see figure 1). In this
example, the processor received two data items, d[0] and d[1], corresponding to two
patient identifiers. It will fire twice and for each patient it will produce a 2-dimensionnal
list containing all volumes for each patient and all slices for each volume. The input
patients list is terminated by an <eol> end of list identifier. Similarly, each volume is
delimited by an <eol>, tagged with the patient number and the volume number, each
sequence (list of volume) is delimited by an <eol> tagged with the patient number, and
finally the whole output list is delimited by a higher level <eol> tag.

It is to be noted that the list collection capability provides a data synchronization
functionality. In the example of figure 1, the “Interpolation” processor uses this capability
to synchronize all image slices from a same patient, from a same volume prior to processing
the coherent slices stack.

11
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d[0]
d[1]
<eol>

d[i] = Patient i identifier

[ DICOM reader}

d[0;0;01, d[0;0;1], d[0;0;2], d[0:0:3], <eol>[0;0]
d[0:1;0]. d[0;1;1], d[0;1;2], d[0;1;3], <eol>[0;1] . . . .
<eol>[0] d[i;j;k] = slice k of volume j of input i
d[1;0;01, d[1;0;1], d[1;0;2], d[1;0;3], <eol>[1:0]

d[1;1 ;0]], d[1;1;1],d[1;1;2], d[1;1;3], <eol>[1;1]

<eol>[1]

<eol>

[=Xe]

Figure 2: Data items and list structures involved in the “DICOM reader” processor ex-
ample. This processor produces a 2-dimensionnal list for each input patient ID received.

4.2.2 Lists management in MOTEUR

Currently, MOTEUR does not handle lists. Beanshells with list input/output types are
interpreted as receiving/returning a single item independently of the processor expected
list depth. As a consequence, MOTEUR does not provide partial data synchronization
and cannot enact the cardiac workflow application use case without heavy tricks imple-
mented through service ad-hoc wrappers. MOTEUR does handle asynchronous data flows
and is capable of identifying a data item history for the need of iteration strategies imple-
mentation in a concurrent context though. Provided that the processors are instrumented
to declare expected lists depth, MOTEUR can be extended. List will be managed at the
same level as iteration strategies as will be detailed in section 4.3.

4.2.3 Lists management in MA-DAG

Currently the data flows described in the MA-DAG language are limited to scalar, file or
matrix data types. To manage lists of data items as described previously, the language
should include new types of data flows, as well as a new syntax to be able to include refer-
ences to items within a list. Therefore a new container data type must be implemented,
as a generic list of items that can contain any other type of data including lists. The
MA-DAG language specification will contain:

1. New possible values for the type attribute valid for the different kind of ports within
a node (ie elements <arg>, <in>, <inOut> or <out>). For example, a list of integer
items would be described by type =" LIST(DIET_INT)”, and a list of lists of files
would be described by type =" LIST(LIST(DIET_FILE))”.

2. An extended syntax for the source attribute of <in> or <inOut> elements and for
the sink attribute of <out> elements. For example, a node (B) taking as input the
first element of the list generated by node A would be described as:
<node id="node_A" path="service_A">

<out name="out" type="LIST(DIET_FILE)"/>
</node>
<node id="node_B" path="service_B">

<in name="in" type="DIET_FILE" source="node_A#out[1]">
</node>

12
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Another example for describing a node (C) that takes as input a list of lists of files
composed of two elements that are the lists generated by nodes A and B:

<node id="node_A" path="service_A">
<out name="out" type="LIST(DIET_FILE)"/>
</node>
<node id="node_B" path="service_B">
<out name="out" type="LIST(DIET_FILE)"/>
</node>
<node id="node_C" path="service_C">
<in name="in" type="LIST(LIST(DIET_FILE))" source="node_A#out;node_B#out">
</node>

These enhancements to the MA-DAG language would allow the processing by the grid

middleware of tasks that have a dynamic number of inputs and outputs, such as the

cardiac workflow described in section 3.1. Currently the DIET grid middleware does not

handle such data structures but the specification of the API is being standardized by the

OGF* and an implementation of this API will be done soon within the DIET project.
Remark: these enhancements do not affect the MA-DAG language DTD

4.3 Iteration strategies
4.3.1 Match iteration strategy

Scufl defined two basic iteration strategies to combine a pair of input ports: the cross prod-
uct corresponding to an all-to-all composition semantic and the dot product corresponding
to a one-to-one semantic. Most data flows only implement the one-to-one semantic (e.g.
Kepler PN director). The addition of the all-to-all semantic and the ability to compose
these basic strategies in a more complex expression considerably enrich the language se-
mantic.

In WORKS’06 [6] we have proposed an alternative iteration strategy, close to the
one-to-one semantic but which depends on the application semantic. The WORKS’06
strategy is based on the definition of groups of related workflow input data by the user.
For instance, the user can define the data belonging to a same patient as members of a
same group. The WORKS’06 operator will match two data items received on two input
ports if they belong to (or one of their ancestor in the data production history tree belongs
to) a same group (e.g. if they ultimately relate to a same patient). By opposition, the
one-to-one semantic is dependent on the order of arrival of the data items. Furthermore,
the WORKS’06 operator uses the provenance information on the data sets transformed
within the workflow. It proved to be a powerful operator to ensure that only semantically
related data items are processed altogether at any depth in the workflow processing.

In the GWENDIA language, we propose to extend the WORKS’06 operator semantic
in a match iteration strategy, later on denoted @, that complements the dot and cross
products (denoted ® and ® respectively). The match operator will relate to a specific
data group, as opposed to the WORKS’06 operator which matches any pair belonging to
any identical group. As a consequence, a data item may belong to several groups (e.g. G1
and G2) and be related in a processor P to other data items belonging either to G1 or to
(G2 depending on the semantic of P. For instance, let us consider multi-modality medical
images: for each patient Py and P; are acquired 71, T2 and PD magnetic resonance image
(denoted T'1p and T'14, etc). The images can be grouped by patient (e.g. it makes sense
to analyze different images from a same patient if the processor is performing multi-modal

4Open Grid Forum http://www.ogf .org/
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classification of the image content) or by modality (e.g. to register images of different
patients in a same spatial frame). Figure 3 illustrates the different groups that can be
defined by the user and the matching operator behavior.

0 1 l/@ modalityl
T2, |[=—| T2, o To | =77 T2 | = 7| POy
registration
PD, | <= | PD, Thy | == | T2 |= = | PD,

@ patient

classification

Modality group Patient group

Figure 3: Matching operator.

The match operator has an impact to the input data sets file format in addition to the
workflow language itself: the input data needs to be tagged.

4.3.2 TIteration strategy combined with lists

Iteration strategies are fully compatible with lists. In fact iteration strategies only have
a meaning when dealing with lists of data items: the all-to-all semantic corresponds to
a cartesian product between two lists of items while the one-to-one semantic refers to a
matching of items from two different lists (using an order criterion or a group belonging
criterion for matching). Although declared as properties of processors in Scufl, both itera-
tion strategies and list manipulations correspond to data flow pre-processing applied prior
to processor invocation. They could appear as specific data flow adaptors as illustrated in
figure 4.

a[0;0], a[0;1], <eol>[0]
a[1;0], a[1;1], <eol>[1]
<eol>

depth-0 list to depth—1 list adaptor

o9 depth—1 list

depth—0 lis
<eol> nput port

{aska )
<eol>
Heavy processor

(X) adaptor

Figure 4: Explicit adaptors (left) versus heavy processor (right) view of data flows.
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In the GWENDIA workflow language we prefer to declare lists adaptors and iteration
strategies together with the processor to declare its invocation semantics internally. How-
ever, a logically equivalent expanded workflow view such as the one show in left of figure 4
can be proposed to end users for debugging purposes.

4.4 Control structures

Scufl does not define control structures but a special case of conditional (fail-if-false/true
processors). In Taverna 2 design, control structures are not really integrated. There is
only a recommendation to embed data flows into a control workflow using sub-workflows
if control structures are needed, similarly to what is done in Kepler. This approach is
sound but it has the severe drawback to imply data synchronization in all sub-workflows
embedded, hence breaking data flow pipelines and loosing data parallelism. Some authors
advocate separating data and control flow for the sake of simplicity indeed [3, 1], although
they do not explicit the “complexity problem” arising when embedding control structures
within the data flow.

In the GWENDIA language we prefer control structures completely integrated within the
data flow to achieve maximal performance. Both loops and conditionals may be seamlessly
integrated in a data flow.

Conditionals. Conditionals can be implemented in a data flow as data filters. Processes
need to be able to return an empty output in some cases. This empty output will be inter-
preted by the workflow engine which will not trigger invocation of subsequent processor(s).
A processor may evaluate a condition and send data items on its outputs depending on
the test value. Such a conditional may either correspond to an if-then-else semantic (a
processor with 2 outputs, and data items sent either on one or the other of the outputs)
or a switch-case semantic (a processor with multiple outputs dispatching each input item
to one of its outputs) or even a filter that transfers on its output(s) only a subset of the
data items received (as exemplified in figure 5, right). The condition can be interpreted
either at the business code level or as a local beanshell script. Business-level conditionals
are not known from the workflow manager and they are handled as any processor. Their
only particularity is to potentially return an empty result. Beanshell are convenient for
evaluating conditions as they provide a mean to map workflow values into local variables
and to perform any computation with these values. Beanshell conditionals are evaluated
at the workflow engine level and they can be identified as specific processors. A specific
support will be provided in the GWENDIA language.

Initialization

any code [ if(i < j) then out=i else out=<

out

return & to stop loop

Figure 5: Control structures embedded in a data flow: loop (left) and conditionals (right).
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Loops. Asmentioned before, loops of processors may exist in a data flow through circular
data links connectivity. Setting a loop require that two data links can be connected to the
same input port of a processor: one link connected to an initialization source, the other
link looping the data items (see left of figure 5). To stop the loop iterations, it is also
needed that a processor can send no data item on one of its output ports as described in
the case of conditionals. The loop condition is evaluated internally to one of the processors
in the loop. It can be completely specific to the business domain and not be visible at
the workflow level. Alternatively, one can use the beanshell processors to evaluate the
loop condition, similarly to what is proposed in conditionals. Such a loop is identical to
a conditional with a data link loop (see left of figure 6 for an example). No additional
language construct is needed to express it. A special case it the for kind of loop for which
the number of iterations is known in advance and the loop counter can be incremented in
a beanshell processor. A specific support will be provided to handle for loops: the for
processor will maintain a counter for each input data item traversing the loop. It will have
to differentiate input data items and looping data items that are receive on a same port,
as illustrated in right of figure 6. This can be done by analyzing the history of data items
computations.

Initialization Initialization
i v

if (i < 10) out for i=1 to 10

then 1=i; out= ; out=1+ 1 do 1=v; out=0 ;

else 1= ; out=i; endfor 1= @; out=v;

out out

Figure 6: Implementing loops: while loops are implemented as conditionals (left) while
for loops require specific language support (right).

4.4.1 Implementation of control structures in a data flow

The implementation of the loop and conditional control structures in a data flow are
straight forward. The main extension needed is to authorize a processor to return an
empty result upon invocation. Given that different kind of processors return different
forms of output (e.g. a web service always returns a value, be it an empty string or an
empty list), a special code has to be decided to be interpreted has the empty output.

4.4.2 Implementation of control structures in a DAG

Loops are naturally unfolded in DAGs. This prevents the use of loops for which the
number of iterations is unknown in advance.

Filters cannot be implemented in DAGs. Both unbounded loops and filters require
dynamic evaluation.
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4.5 Optimization add-ons

The number of data items that a processor takes as input or produces as output can
be left unspecified in the workflow language as this can be managed during execution of
the workflow. However this limits the possibility to instantiate before execution all the
tasks to be executed. As a consequence it limits the ability to schedule these tasks in
an efficient way, particularly if the execution environment is shared with other workflow
submitters. To overcome these limitations, we propose some additionnal XML attributes
for the input and output elements of a processor node in order to specify the cardinality
of these inputs/outputs.

If we take as an example a node that generates as output a list of data items (that
could be a list of files, or a list of integers), with the hypothesis that all instances of this
node will produce lists with the same number (5) of data items, then this number can be
provided in the workflow language within the description of the output port, as the card
attribute.

Syntax for this example:

<processor name="node_A">

<in name="in"/>

<out name="out" type="LIST(FILE)" card="5"/>
</processor>

In case the output has a higher depth of lists imbrication, the value of the card attribute
contains a semicolumn-separated list of integers, one for each level of the structure. This
restricts the usage to structures containing the same number of sub-items in each item of
a given level. The example below shows the syntax for a node with an output that is a
list of 5 sub-lists, each sub-list containing 3 files:

<processor name="node_B">

<in name="in"/>

<out name="out" type="LIST(LIST(FILE)" card="5;3"/>
</processor>

The number of values (separated by semi-column) for the card attribute must match
the depth of the structure specified as value of the type attribute. In case only the
number of items at a given level of the structure is known but not at all levels, then a
special character ’x’ can be used to replace the integer value. It informs the parser that
the cardinality at this level is not known before execution. Below is an example of such
a node that has an output that is a list of 5 sub-lists, each sub-list containing a variable
number of items known only at execution time:

<processor name="node_C">

<in name="in"/>

<out name="out" type="LIST(LIST(FILE)" card="5;x"/>
</processor>

5 Language formalization

5.1 Gwendia language

The GWENDIA language is represented in XML, using the syntax defined in this section
and implementing the semantics described in the rest of this document.
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Types. Values flowing through the workflow are typed. Basic types are integer, double,
string and file. Files are string identifiers that are not interpreted by the work-
flow manager. All types may be embedded in any-depth list (e.g. list(integer),
list(list(string))...).

Processors. A processor is a data production unit. A regular processor invokes a
service through a known interface. Defined processor types are webservice, diet and
beanshell. Special processors are workflow input (a processor with no inbound con-
nectivity, delivering a list of externally defined data values), sink (a processor with no
outbound connectivity, receiving some workflow output) and constant (a processor de-
livering a single, constant value). To improve readability, the input, sink and constant
processors are grouped in an <interface> tag within the document. Other example of
processors are grouped in a <processors> tag. Web services define a <wsd1l> tag pointing
to their WSDL description and the operation to invoke. Beanshells define a <script> tag
containing the java code to interpret. DIET services define a <service> tag describing the
path to service to invoke.

Processor ports. Processor input and output ports are named and declared. A part
may be an input (<in> tag), an output (out tag) or both and input/output value (inout
tag). For each input/output, the type is specified. The input/output type also defines
the port depth list. Iteration strategies are defined through a scufl-like operators tree
expression. The tree nodes are one of the 3 basic data manipulation operators (dot,
cross or match operator). The match operator defines the match tag. Few processor
examples are given below:

<workflow>
<interface>

<constant name="parameter" type="integer">
<value>50</value>
</constant>

<source name="reals" type="double" />

<sink name="results" type="file" />

</interface>

</processors>
<processor name="docking" type="webservice">
<wsdl url="http://localhost/docking.wsdl" operation="dock" />
<in name="param" type="integer" />
<in name="input" type="file" />
<out name="result" type="double" />
<iterationstrategy>
<cross>
<port name="param" />
<port name="input" />
</cross>
</iterationstrategy>
</processor>

<processor name="statisticaltest" type="diet">
<service path="weightedaverage" />
<in name="weights" type="double" />
<in name="values" type="list(integer)" />
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<in name="coefficient" type="double" />
<out name="result" type="file"/>
<iterationstrategy>
<cross>
<port name="coefficient" />
<match tag="patient">
<port name="values" />
<port name="weights" />
</match>
</cross>
</iterationstrategy>
</processor>

</processors>

Data links.
processor input port as exampled below:

<links>
<link from="reals" to="statisticaltest:coefficient" />

A data link is a simple connection between a processor output port and a

<link from="docking:result" to="statisticaltest:weights" />

<link from="statisticaltest:result" to="results" />

</links>

Conditionals and while loops.

Condition and while loops tests are implemented as

special beanshell processors (see figure 5):

<condition>
<in name="i" type="integer" />
<in name="j" type="integer" />
<out name="out" type="integer" />
<if>i < j</if>
<then>out=i;</then>
<else>out=V0ID;</else>

</condition>

For loops.

<for>
<in name="v" type="double" />
<out name="1" type="double" />
<out name="out" type="double" />
<from>1</from>
<t0>10</to>
<step>1</step>
<do>1=v; out=V0ID;</do>
<endfor>1=V0ID; out=v</endfor>
</for>

5.2 DAG instantiation

These loops are similar in their syntax (see figure 6):

The instantiation consists in converting processors from the Gwendia functional workflow
language into tasks in the MA-DAG language. For each processor node in the workflow
several tasks can be generated, one for each set of input data available to the node. Other
types of nodes (eg conditions or loops) can trigger the generation of a whole set of tasks.

The complexity of a DAG instantiation depends firstly on the structure of the func-
tional workflow (presence of loops or conditions) and secondly on the cardinality of inputs

and outputs of the processor nodes.
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Figure 7: Loops

e Loops : to be able to instantiate a loop, the list of values for the loop parameter
must be known so if this list depends on the execution of other nodes then the loop
instantiation will be done after execution of these nodes. Then the nodes within
the loop will simply be instantiated as a graph of tasks for each value of the loop
parameter (see figure 7). Some optimization may be used at this stage to avoid
generating too many tasks simultaneously in case the loop parameter has a large
range of values.

e Conditions: as for loops, the condition variables must be known before the condition
can be instantiated, so if one of the variables depends on the execution of other nodes
then the condition instantiation will be done after execution of these nodes. Then the
condition can be evaluated and the DAG instantiation can continue or not depending
on the result.

e Cardinality of inputs and outputs: The cardinality of an input is the number of data
items provided for this input in one instance of the node (i.e. one task), provided
that these items are grouped in a list. This number can be static or dynamic. The
same applies to the outputs of the node. It is important to note that when a list of
several data items is produced by a task, it can either be processed as a whole by
child tasks, or it can be splitted in several elements that are processed separately.
The functional workflow language specifies the correct behaviour by the values of
the type attribute for the input and output.

To generate the tasks for a given node, the functional workflow language parser will
check for each input port of the node wether the data source is external or is an output
port of another node of the workflow. If the source is external, a link to a data file (XML)
should be provided in the workflow and the parser will create an iterator on the collection
of items specified in this file. If the source is an output port of another node, the parser will
create an iterator on the collection of items produced by all the tasks that are generated
for that node.

When the node has several inputs, the operator applied on this set of inputs will
determine how the data items are combined to produce input data sets. The operators
can be “dot”, “cross”, “match” (see section 4.3). The operator will be applied to the
different input iterators to produce a global input iterator for the current node. For each
iteration of this iterator i.e. one data set a new task will be created in the DAG and
the outputs of this task will serve as source for the iterators of the following nodes. The
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Figure 8: Iteration due to different list depths

number of tasks to be generated therefore depends on the number of items in the collection.
This number can be known before execution by first looking at the number of data items
in the external source file and by providing the cardinality of task outputs in the workflow
language (see section 4.5).

In case the output (resp. input) is a list of data items, the iterator will take into
account the depth of the list structure (which is statically defined in the wf language) and
adapt the level of iteration to the depth specified for the input (resp. output) port (see
figure 8). There are three possibilities:

1. output depth > input depth: for example if node A’s output depth is 2 (e.g. output
type is 'LIST(LIST(INT))’ for integer items) and node B’s input depth is 1, then
one A task output will be connected to several B tasks input. Each B input will also
be marked with a label that corresponds to the A output, as this may be used later
in the workflow to group the outputs of tasks together (see below).

2. output depth = input depth: one output item will correspond to one input item

3. output depth < input depth: for example if node A’s output depth is 0 (eg output
is an integer) and node B’s input depth is 1, the iterator will take items produced
by several A tasks (A1, A2, etc...) and group them in a list to produce one item for
a B task. This grouping will be done according to the labels attached to the A node
outputs.

As DAG instantiation depends on knowing the cardinality of inputs/outputs, this
process cannot be entirely done before the execution unless all required cardinalities are
statically specified (idem if the loop conditions depend on task outputs). Therefore one
functional workflow may be instantiated as several distinct DAGs with dependency con-
straints, which cannot be all generated at the same time. The instantiation is therefore a
dynamic process that runs in parallel with the DAGs execution. A first DAG is generated
using at least the entry nodes of the workflow (the nodes that do not depend on other
nodes outputs). Then the generated outputs of this first DAG will trigger the instan-
tiation of other nodes or of nodes that have been partially instantiated in the previous
DAG. This process ends when all nodes of the workflow have been fully instantiated.
Therefore the MA-DAG workflow language requires some other extensions to describe
these DAG relationships. A DAG element will have a new attribute id that identifies
the DAG, precedence relationships between DAGs will be described using new elements
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<prec id="[dag_id]"> within the <dag> element, and the source attribute of task inputs
will eventually contain a reference to another DAG output, for example an input element
of a task A in DAG X could have this form: <IN name="taskA_ in" type="DIET FILE"
source="dagY#taskC#out">.

6 Conclusions

This document discussed the different approaches to implement data-intensive scientific
data flows. In particular, it outlined the interest and differences between (functional) data
flows and DAGs. A new workflow language, enriching several existing one among which
Scufl and MA-DAG is then propose in the context of the GWENDIA project. This language
fully enables the GWENDIA use cases and we believe will adapt to a very large spectrum
of other use cases.
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