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Abstract

We propose a classification of workflow languages emphasizing on their expressive-
ness. Expressiveness is not a property that can easily be quantified. We explore
different criteria for evaluating expressiveness, putting the focus on the expectations
of the applications considered in the Gwendia project.
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1 Introduction

The representation and enactment of workflows has been an area of investigation for a
very long time. Originally developed for formally describing enterprise processes, they
have been adopted in a broad context and in particular for the representation of scien-
tific data analysis procedures. One of the main advantages of workflows is the simplicity
and flexibility that they provide to the users. Although any business or scientific proce-
dure could be represented through very expressive programming languages, workflow are
preferred in many context due to their ability to:

• provide abstract representations simplifying the expression of complex procedures in
a user-friendly manner;

• provide flexibility and dynamicity in the composition of business processes involved
in a given procedure;

• provide a transparent code parallelization support;

• provide enactors that interface to different computing back-ends transparently.

Similarly to scripting languages that aim at easing prototyping by providing more flexibil-
ity than compiled programming languages (relaxed data types and declarations, on-the-fly
interpretation, etc), workflow languages provide easy business processes composition in an
environment that is high level (usually graphical) and flexible (often platform indepen-
dent). As a consequence, from a user point of view the expected properties of workflow
languages do not necessarily focus on very complex representations but also on simplicity,
compactness and flexibility of the workflow.

1.1 Definitions

The workflow management coalition1 proposes the following definition of workflow man-
agement:

Workflow management is the automation of business procedures or “workflows”
during which documents, information or tasks are passed from one participant
to another in a way that is governed by rules and procedures.

This broad definition reflects the diversity of application domains where workflows are
used. Indeed, before being studied for the description of distributed applications, work-
flows have been used for describing the organization of production processes in companies
as well as the interaction between several business entities.

In figure 1 we depict a typical graphical representation of a workflow. The participants
(yellow boxes) can be denoted as tasks, services, processes, transitions, activities, functions
or components depending on the workflow approach. The enactment of a participant can
be called invocation (mostly for services), execution (for tasks), firing (for transitions and
activities) or simply call (for a function or component). Workflow is a particular type
of software composition system, where the activities of the workflow are the components
to be assembled. Activities may be interconnected by control links (blue doted link) and
possibly data links. Control links are simple temporal dependencies between two activities:
in figure 1, the third activity cannot fire before the second ended. In some cases, data

1http://www.wfmc.org
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Figure 1: Workflow components and links

links (red arrows) express data exchanges between successive activities. They also imply
time dependencies between the firing of two different components but in addition they
involve an exchange of data between one activity input and one activity output. In cases
of asynchronous workflow enactors, additional ports are required to buffer the data to be
processed by different activities: data links may be connected to input and output ports.
The graph of nodes and data links represent the data flow in a workflow. The graph of
nodes and every links represent the control flow (often data flow links are also used as
control flows as they imply dependencies).

In [12], Gannon notices that workflows act at a different scale than software composi-
tion systems: they deal with human-scale processes that are scheduled over time. Similarly,
in the field of distributed applications, workflows deal with coarse rather than fine grain
parallelism which is better described with traditional parallel programming approaches
such as MPI or OpenMP. Gannon also underlines that workflows refer to a centralized
execution in which a single engine is responsible for the control of the process. In a grid
context, this property of workflows has pros and cons. On the one hand, it is true that
a centralized perspective is necessary to have a coherent control of the execution of the
application in order to be able to provide a representation of the status of the application
to the user. Yet, on the other hand, centralization may lead to dramatic performance
limitations, in particular when dealing with data-intensive applications that involve large
numbers of activities.

In [22], the authors propose a definition highlighting the platform-independence of the
workflow definition:

We consider a workflow to be the organization of a structured application in
an abstract fashion, such that the implementation of the atomic tasks being
organized is independent from the organization itself.

This aspect of workflow programming is crucial in the grid computing area, where ap-
plications are typically composed from heterogeneous codes and software, each of them
having its own architecture or system requirements. It is also motivated by the emergence
of component-based programming models that promote code reusability and platform-
independence. While traditional scripts, that are often considered as the ancestors of
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workflows, are tightly coupled to the platform and architecture, workflows provide a rep-
resentation of the logic of the application independently from the implementation. It is
particularly important for grid applications, where the heterogeneity of the resources and
middlewares is critical. Built on top of service-oriented architectures, workflows foster
code reusability, thus reducing applications development time. As a consequence, work-
flows are increasingly cited as a transparent way to deploy applications on grids and a
large amount of applications rely on them for a successful gridification. Works related to
service composition propose alternate definitions where the workflow itself is viewed as a
service [42, 41].

Workflows may also be defined by the use of a simple graphical language for end-users,
thus easing code understanding and application development. Workflows offer a unified
and simple view of complex experiments that may gather heterogeneous codes from various
developers and institutes. Barga and Gannon indeed noticed in [5] that:

The result is a workflow in which each step is explicit, no longer buried in
Java or C code. Since the workflow is described in a unified manner, it is
much easier to comprehend, providing the opportunity to verify or modify an
experiment.

1.2 Workflow representation languages

In this deliverable and in the context of the Gwendia project we focus on the repre-
sentation of scientific workflows with the perspective of their execution on distributed
computing infrastructures. Scientific codes are a typical examples of heavy computation
codes where lower level programming languages are used to tackle the fine-grain complex-
ity of the data analysis. Scientific workflow languages are providing an extra level of data
analysis procedure representation by describing the coarse-grain interaction of indepen-
dent codes. In this context, the added-value of the workflow languages relies mostly on its
ability to federate non-instrumented codes in a single procedure, to validate the integrity
of the workflow and to provide higher level capabilities that where not necessarily available
in the native code languages such as parallelism and data flow descriptions.

In the case of compute intensive scientific workflows considered in this document, the
expression of parallelism is particularly important. By exploiting workflows, many users,
non-experts in distributed computing, expect to benefit from a parallel implementation
without explicitly rewriting parallel code. Any workflow graph of dependencies intrinsi-
cally represent some degree of parallelism. In many scientific application though, the data
parallelism is massive and is the primary source of performance gain expectation. Espe-
cially on large scale distributed systems such as grids where communications are costly,
data parallelism is a coarse grain parallelism that can be efficiently exploited. As we will
see in section 2, data parallelism is represented very differently depending on the approach
adopted.

In the literature there is also often a confusion between workflow languages and work-
flow enactors. Although both should be independent, except for a few standards a new
workflow language and the corresponding enactor are developed all together and there is
no alternative to enact a workflow written in a specific language. Most workflow languages
are therefore high level representations and the work performed by the enactor to trans-
form this abstract representation into an executable set of computational tasks is often
hardly detailed. In some rare cases though, there exist different representations for the
abstract and concrete executable workflows.
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Many orthogonal classifications of workflow languages could be adopted depending on
the interest of the workflow user. Yu and Buyya [45] propose an extensive taxonomy
that is focusing on the properties of workflow enactors (load balancing, fault tolerance,
etc). Gil [13] is focusing more on the abstraction level of the workflow representation
(distinguishing templates that can be instantiated and executable workflows). In this
deliverable we focus on the expressiveness and performance of compute intensive applica-
tion. We therefore adopt a classification, outlined in figure 2, that emphasizes both on
the abstraction level of the workflow language and its capability to express a broad spec-
trum of applications. We then consider the way workflow enactors can turn the abstract
representation into a concrete workflow to execute it on a distributed grid infrastructure.

2 Classification: from models to effective execution

The following classification is based on the presence or absence of functions, data and
resources in the workflow representation. Many other criteria could be considered but
in the context of the Gwendia project, we consider them as transverse and we focus on
the amount of information concerning the process execution that is provided inside the
workflow description languages. The classification proposed in this section is summarized
in figure 2: existing languages will be studied from completely formal models, that are
used for the analysis of workflow properties, to concrete schedules of tasks graphs. If a
workflow definition gathers functions, data and resources, then it is fully executable. On
the opposite, if none of those three aspects are defined, the workflow is a formal model.
Otherwise, the workflow representation may be a functional workflow if the functions are
defined but neither the resources nor the data are available in the description. If resources
are defined but data is not, then the workflow representation is a service workflow. Finally,
in tasks graphs, functions as well as data are defined but the resources are missing.

Formal models are only used to study mathematical properties of workflows. They are
not directly usable as a particular implementation. The highest level workflow engines
enact functional workflows. Enactment of such workflows requires the independent defi-
nition of data sets and mapping onto grid resources. There are more specific languages
defining either resources (the service workflows), either the data (the tasks graphs) or
both (the concrete workflows). Workflows languages on the left hand side of the figure
share the property that they do not define data sets: the users have to define data sets
at run time and the workflow managers have to build data flows prior to execution of
the workflows. A consequence is that often the number of tasks to execute is unknown
prior to the execution. Conversely, workflow languages on the right hand side instantiate
all computation tasks given that all data fragments to process are known prior to the
execution. As a consequence they are less flexible from a user point of view but on the
other hand they facilitate the scheduling problem.

Concrete workflow languages are usually not available to the users as such but they
rather are the product of a workflow enactor processing a workflow description. All work-
flow engines have to produce explicitly or implicitly concrete workflows as their output.

2.1 Formal workflow models

Formal workflow models correspond to languages where no information is given about the
nature of the implied activities, the amount and type of data processed and the resources
used. Those models are suitable for workflow analysis because they offer an abstract
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Figure 2: Classification of workflow languages

representation of the application. For instance, properties such as liveness (the absence
of deadlocks) and boundedness (of the amount of generated data for instance) can be
inferred from such models. Two broad classes of formal models have been proposed: Petri
nets and π-calculus. There has been hot debates about the superiority of one model above
the other [34, 37] and they both lead to the development of systems or standards. For
instance, π-calculus is said to have inspired the development of choreographies (presented
in section 2.2) whereas various workflow engines are based on Petri nets [38].

2.1.1 Petri Nets

Petri nets have been introduced in the thesis of C.A Petri, in 1962 [31]. It is a graphical
modeling tool applicable to many systems and particularly suitable for parallel systems as
they extend the notion of state machine with concurrency.

A Petri Net is a particular kind of directed bipartite graph, associated with a set of
tokens. It is made of two kinds of nodes called places and transitions. Edges of the graph
are either from a transition to a place of from a place to a transition. State machines
are a subclass of Petri nets: in a state machine, each transition has exactly one input
place and one output place. Tokens are located in places. Multiple edges linking the same
transition to the same place or the same place to the same transition can be represented
as a weighted edge whose label denotes the number of corresponding unitary edges. A
transition is enabled when all of its input places contain at least the number of token
of the corresponding edge label. It is then ready to fire. After a transition has fired, it
produces for each output places the number of token of the corresponding edge label [30].
An illustration of the transition firing rule is given on figure 3. The top line of figure 4
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Figure 3: Evolution of the multi-merge workflow pattern implemented with Petri-Nets for
a particular initial marking of p1.
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Figure 4: Implementation of workflow patterns. Left: Multi-merge ; Right: exclusive
choice. Top: with Petri-Nets ; Bottom: with π-processes.

(adapted from [39]) displays an implementation of two classical workflow patterns using
Petri-Nets: the multi-merge and the exclusive choice.

Several extensions of Petri Nets have been proposed and used for various applications.
For instance, timed nets [21] introduce delays associated with transitions and/or places
and stochastic Petri Nets associate a random variable to the time delays [2]. Inhibitor
edges have also been introduced in extended Petri Nets: they disable the transition to
which they are connected when their input place has a token [1]

Colored Petri Nets (CPN) were introduced to ease the manipulation of data values in
Petri Nets [16]. They are particularly used for workflow modeling and are the basis of the
YAWL workflow system [38]. CPN are a sub-class of High Level Petri Nets, which also
include Hierarchical Petri Nets. In a colored Petri net, every token have a value. In a
CPN, tokens are distinguishable: each of them is associated to a color which represents a
data value. Places have an associated color set which represents the data type to which
belong the colors of all their tokens. Edges are annotated with expressions that determine
the exact data values removed and added by the firing of a transition.

2.1.2 π-calculus

In [34], the authors claim that some of the procedures used in business cannot be modeled
using workflow engines that do not rely on π-calculus. They suggest to adopt the term
process to denote workflows relying on the π-calculus formalism. A singular characteristic
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of π-calculus is that it is able to exchange information among activities whose relationships
evolve as a result. This feature is called mobility. Mobility is required to model processes
where the exchange of information fosters the link between activities. The example of email
exchanges is often cited to illustrate such a behavior: by receiving emails sent to multiple
recipients, a participant becomes aware of addresses of other people, thus developing her
communicating ability. Partisans of π-calculus advocate that static representation systems
such as Petri nets cannot properly represent mobility [32].

Pi-calculus is an extension of process algebra aiming at handling concurrency. It has
been proposed by Milner [28]. Pi-calculus is described in terms of processes, channels
and names. Channels are used by processors to exchange messages. Both messages and
processes are called names and thus cannot be distinguished. The sending of a message
u over a channel x is written x̄(u), whereas receiving the message u over the channel x is
denoted by x(u). Channels themselves can also be sent and received, which make possible
the description of mobile processes such as the email use-case described in the previous
paragraph. The sending and receiving of a message u over any channel can be abbreviated
respectively by ū and u. Processes can be composed sequentially by the operator ′′.′′ or in
parallel, with the notation ′′|′′. The choice operator ′′+′′ is also available as well as the ′′!′′

unary operator which is used to specify that a process can be iterated as many times as
required. A condition about a particular name can be expressed by the [x = y] notation.
There are two particular processes: 0, which does not do anything and stops the process
execution and τ , which corresponds to a hidden activity, that does not take part into the
global process [43]. A τ process is an activity that corresponds to an effective activity of
the workflow: for instance, it may model the computation of a service operation on some
data, which is seen as a black box from the workflow point of view.

It is clear that π-calculus is able to model both control and data flows. Van der Aalst’s
workflow patterns [39] are expressed using π-calculus in [33]. Examples from this work are
recalled here, to illustrate the π-calculus formalism. The bottom line of figure 4 presents
two workflow patterns: the left of the figure presents shows the multi-merge whereas the
right of the figure displays the exclusive choice. The π-calculus representation of the
multi-merge is the following:

B = τB.d̄.0
C = τC .d̄.0
D = !d.τD.0

Each line of this equation models a particular process of the workflow. After their exe-
cution, processes B and C both send the same name d which is required by process D.
The presence of a ! operator in front of process D indicates that it will be replicated as
many times as needed. In this case, two copies of D will be done. The exclusive choice is
represented by the following π-processes:

A = τA.(b̄.0 + c̄.0)
B = b.τB.0
C = c.τC .0

For this process, the choice operator + is needed to distinguish the 3 invocation cases.
The π-calculus formalism has been extended to the case of Web-Services orchestrations

in [23]. In this work, the authors add a transaction operator which is able to cope with
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faults and to trigger a recovery process if the fault message is received. Based on the
same webπ∞ extension of the π-calculus, another application to orchestrations is proposed
in [20], where the authors detail a π-calculus based semantics for WS-BPEL. Based on their
analysis, it is highlighted that the three different error handling mechanisms of WS-BPEL
are not necessary and a novel orchestration language based on the idea of event notification
as the unique error handling mechanism is proposed. In the context of choreographies,
a formal model of WSCI (see section 2.2) using a process algebra approach (CCS) is
proposed in [4] and applied to web service compatibility, replaceability and the automatic
generation of adapters.

2.2 Functional workflows

Functional workflows are the class of workflows for which only the activities and their
dependencies are defined. In this class, the size of the handled data sets is not represented
and will only be known at run time. As a consequence, it is not possible to determine the
number of tasks generated by such workflows before the execution. This property can be
used to determine whether a workflow model belongs to this class or not. In particular, this
class contains traditional script languages and workflow languages that have elaborated
control constructs allowing to define unbounded loops, i.e. loops for which the number
of iterations cannot be known before run time. Depending on the architecture of the
application, the activities of the workflow can be described with their actual code (such
as in scripting languages for instance) or only with their interface (i.e. in service-oriented
architectures).

This workflow representation focuses on the chain of processings. In particular, this
class covers pure data flow applications, also known as pipelines. To become executable,
such workflows have to be instantiated on the data which is provided at run time. The
workflow can then be iterated on the data. Defining how this iteration behaves is the role
of data composition strategy that will be discussed in section 3.3.5. Resources are not
defined either, thus making this representation suitable for scheduling the execution tasks.

This workflow class is particularly suitable for data-intensive applications. Indeed, it
prevents the developer from an exhaustive description of the whole task set required by
its application: she only has to describe the functional template of the application which
is instantiated on the data by the workflow manager.

Virtual Data Language. The Virtual Data Language (VDL) [46] is a functional work-
flow language that derives from a former VDL [11]. It has control flow constructs such
as for each, if, switch and while. It is based on the declaration of procedures written
in a C-like syntax. Procedures can be atomic or made by other procedures. VDL does
not make any assumption about the size of the input data sets. However, the underlying
workflow manager (The Virtual Data System - VDS) expands the VDL definitions into a
tasks graph (see section 2.4) and executes them. This is made possible by the fact that
foreach nodes are expanded at run time thus enabling data sets to have a dynamically
determined size. We guess that a similar late expansion system is used for the other con-
trol flow constructs that lead to the execution of tasks whose number is not known before
run time. The data types representation is extensively described in VDL. It relies on an
XML Data Set Typing and Mapping (XDTM) that allows the types of data sets and pro-
cedures to be defined abstractly in terms of XML schema. Separate mapping descriptors
then define how such abstract data structures translate to physical representations. For
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instance, XDTM provides mappings from file names to their absolute path in a file system.
Yet, data is not instantiated inside the VDL representation. This is made at the VDS
level. Both those arguments lead us to put this approach in the functional workflow class,
even if it is tightly interfaced with tasks graphs: what is called a “high-level” workflow
representation in Fig.17.8 of [46] is a functional workflow because data segments are not
defined on this representation. The described implementation of the VDL prototype con-
verts this workflow definition into a tasks graphs by expanding Directed Acyclic Graph
(DAG) nodes (Fig. 17.9 of. [46]).

GSFL. The Grid Service Flow Language (GSFL) has been designed as an adaptation of
the WSFL to grid services, which have different needs from standard Web-Services [42].
In particular, its authors underlines the fact that the workflow specification needs to
be able to allow communication between the services to avoid the workflow manager to
become a bottleneck centralizing the data transfers. Avoiding centralized enactment is
not straightforward with web services, whereas OGSA introduced facilities for that. In
particular, GSFL provides a mechanism to connect notification sources and sinks defined
in the OGSA. GSFL is also able to handle OGSA registries and factories for creating grid
services. A GSFL document defines services providers, the activity model, the composition
model and the life-cycle model. Service providers are the list of services involved in
the workflow. They can be located statically, by a hard specification of an endpoint
or invoked using factories. In the latter case, resources are not defined in the workflow
document, which leaves room for further scheduling. The so-called activity model identifies
the particular operations of the services involved in the workflow. The composition model
describes the data and control flow between the activities and the life-cycle model contains
a list of precedence links describing the order in which the services execute.

ICENI / ICENI-II. ICENI’s authors identify two different workflow representations:
the spatial and the temporal ones [22, 26]. The user specifies the workflow in a spatial ex-
pression, which, in our terminology, corresponds to a functional representation. This user-
defined workflow is also called an execution plan. At this stage, components are described
in terms of meaning and behavior. ICENI then converts it to a temporal description,
i.e a tasks graph. As underlined by the authors, problems appear when the functional
description is not acyclic, as discussed in the next sections. As in GSFL, the components
themselves talk to their partners, without any execution centralization. ICENI II is de-
scribed in [25, 24]. Three steps are identified in the workflow generation: specification,
realization and execution. Specification produces an abstract workflow whereas realization
aims at validating the workflow and then map its elements to concrete resources. Execu-
tion deals with the monitoring of the application and functionalities to allow component
migration.

AGWL. The Abstract Grid Workflow Language (AGWL) is the workflow language used
by the ASKALON workflow manager [10] which offers two interfaces for generating large-
scale scientific workflows in a compact and intuitive representation: graphical modeling
using the UML standard and a programmatic XML based language. AGWL workflows can
be either generated from a graphical UML description or directly written by the end-user.
AGWL workflow descriptions are definitely independent from the execution resources. A
dedicated scheduler is responsible for resource allocation and a resource manager handles
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reservation. AGWL workflows include both control-flow and data-flow. Control-flow con-
structs include sequences, dags, for, forEach, while and do-while loops, if and switch
construct and more advanced constructs such as parallel activities, parallelFor and
parallelForEach loops and collection iterators. The user can also specify properties and
constraints (such as memory requirements) for activities and data flow dependencies. An
example from [10] underlines that dynamic loops can be defined, which lead us to put this
language in the functional workflows category. ASKALON uses another language, CGWL
in order to have a tasks graph representation of the workflows. Before the execution, the
workflow manager performs a mapping from AGWL to CGWL.

Choreographies. The term choreography originates in a metaphor of a workflow which
is viewed as an artistic work performed by actors, i.e the activities of the workflow. In that
sense, choreography is opposed to orchestration: in a choreography, each actor is linked to
other ones and the global process is obtained as a result of those local interactions. On the
contrary, in an orchestration, actors are directed by a central conductor which manages
the whole orchestra. Choreography and orchestration are terms that are tightly related
to the Web-Services, as specified by the W3C. Choreography is thus often categorized as
a decentralized approach whereas orchestration is centralized [22]. However, even if the
workflow description is not centralized in a choreography as it is in an orchestration, the
practical implementation of a workflow manager that would permit such a decentralized
execution is not specified. Extensions of Web-Services such as WSRF and OGSA seem to
be mandatory in order to have such a decentralized execution.

The initial choreography specification was the Web-Services Choreography Interface2

(WSCI). WSCI allows a Web-Service to define interfaces that describe processes from its
operations. Operations can be composed in sequential or parallel executions and loops
and conditions can be defined. WSCI interfaces describe choreographies between the op-
erations of a Web-Service. WSCI defines global models on top of operations. Global
models describe choreographies between interfaces of several services. It provides a set
of connections (mappings) between pairs of individual operations of communicating ac-
tivities. In [4], authors formalize WSCI using π-calculus. WSCI set up the basis for the
development of the Web-Services Choreography Description Language3(WSCDL). In this
language, interactions are defined among different roles. Roles can be played by different
behaviors that may (optionally) be linked to particular WSDL interfaces. Indeed, the
W3C candidate recommendation for WSCDL specifies that:

A behavior without an interface describes a roleType that is not required to
support a specific Web Service interface.

Thus, WSCDL choreographies are far from being executables: they only describe patterns
for message exchanges among abstract activities. According to the W3C, a choreography
language is not an executable business process description language or an implementation
language. The role of specifying the execution logic of an application will be covered by
these specifications.

Makefile. Makefiles are a particular kind of task workflow that completely relies on
data flow. Activities of the workflow are defined by a command line that includes services

2http://www.w3.org/TR/wsci/
3http://www.w3.org/TR/ws-cdl-10/
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(executables) and data (arguments of the command line). Tasks are linked by precedence
constraints. When a task is ready to be executed, it is effectively fired if and only if
one of its input files has been modified since the last invocation. Makefiles can include
conditionals and loops. Thus, the number of tasks generated by the execution of a makefile
may not be known prior the execution. Moreover, it is possible (with the -j option of
the workflow engine make) to define a number of processes that may run concurrently,
potentially on different CPUs, so that the resources are not defined inside the Makefile.
Consequently, it has to be categorized as a functionnal workflow.

2.3 Services workflows

This section describes some workflows representations where both functions and resources
are specified. Actually, those examples include resources in their description through their
reference to Web-Services. A WSDL document indeed specifies the endpoint of the service.
As a consequence the workflow manager cannot perform any scheduling. Yet, scheduling
is still possible at the last minute, for instance using a particular submission service as
will be discussed in section 2.6.

Scufl (Taverna) workflows. Scufl is a data-flow oriented language that basically de-
scribes the pipeline of an application. Many different kind of activities are specified by
Scufl. For instance, string constants fire only once and return a single string value. Web-
Services can also be enacted by specifying a WSDL document and a particular operation
as well as compiled Java code or Beanshells activities4 that embed a piece of Java code.

Sources and sinks correspond to the inputs and outputs of the workflow. Each of them
may contain several data segments on which the workflow is iterated. Their content is not
specified inside the Scufl document: it is independent from the workflow description and
is only known at run time. In that sense, Scufl is a typical example of functional workflow.
However, it is true that Web-Services activities are bound to a particular resource, included
in their WSDL description. A Scufl workflow instantiated on some input data could thus
be considered as an executable workflow rather than a tasks graph.

Scufl does not include control structures. However, the FailIfFalse and FailIfTrue
activities are defined to implement conditional branching in a workflow, although no con-
trol operator such as if is defined in Scufl. Those activities fail or succeed depending on
their Boolean input value, thus discarding or enabling the activities depending on them
in the workflow.

Attached to each activity with at least 2 input ports is an iteration strategy. Iteration
strategies are used to control how multiple items of the input ports are combined. Scufl
iteration strategies are detailed in section 3.3.5.

Activities input and output ports that can contain several data items and are inter-
connected with data links. An output port can be connected to several input ports. In
this case, the data items are broadcast to all the connected input ports. Similarly, several
output ports can be linked to a single input port. In this case, data items are buffered
into the input port according to their order of arrival. Control links can also be specified
in Scufl to provide elementary coordination constraints.

No control structures are available. Apart from the basic control link, the workflow is
completely driven by the presence or absence of data in the input ports of an activity: it

4http://www.beanshell.org/
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will fire if and only if all of its ports contain adequate data. It is not possible to define
variables in Scufl. As a consequence, there is no expressions nor operators in the language.

MoML (Kepler) workflows. Activities of a MoML workflow are called actors. In
MoML, each actor must define the type of each of its ports. Links (called relations)
can only be defined between ports with compatible types. Ports participating in several
relations have to be defined as multi-ports.

MoML defines no semantics for an interconnection of components. It instead provides
a mechanism for attaching a “director” to a model. The director defines the semantics of
the interconnection. MoML knows nothing about directors except that they are instances
of classes that can be loaded by the class loader [17]. 4 directors can be defined in
Kepler: Continuous Time (CT), Discrete-Event (DE), Synchronous Data Flow (SDF) and
Process Networks. The CT director is used to model physical systems: the workflow is
then directed by a clock. In the DE director, the workflow is also directed by a clock.
Each actor communicates with the other ones by sending them timestamped signals. The
director orders those signals and distributes them to their targets. In the PN director,
each actor is executed in a dedicated thread. Relations between actors are waiting queues
of finite capacity. Writing into a queue is never blocking whereas reading in an empty
queue is blocking. The SDF director is used to simulate data flows.

Orchestrations: BPEL, BPML, BPMN, WSFL, XLANG. Orchestrations are
workflows of Web-Services. This denomination also originates in a metaphor of a work-
flow which is viewed as a musical partition interpreted by the activities and directed
by the workflow engine. Orchestrations differ from choreography by the point of view
adopted by the developer. In an orchestration, a single workflow engine is responsible for
the execution of the application. It centralizes the services invocations so that services
do not communicate between each other [22]. Orchestration is also referred to as a con-
crete workflow whereas choreography is abstract. Indeed, in a choreography, resources
are not mandatorily defined whereas orchestration precisely defines services WSDL and
consequently endpoints.

The de facto orchestration standard is BPEL. It emerged from previous specifications:
WSFL, XLANG, BPML and BPMN that do not survived the BPEL emergence. In [42],
the authors provide a technology survey of workflow languages for Web-Services in 2002.
In particular, a detailed analysis of WSFL is provided. WSFL includes both control and
data links. From our classification point of view, a remarkable feature of this language is
the identification of the services participating in the workflow by using a locator element
which allows a service to be described by a static (hard reference to a WSDL), a local, a
UDDI (the service is looked up using the UDDI API) or a mobility (the service provider is
referenced in a message generated by some activity of the workflow) binding, which allows
us to put this language in the “functional without resource specification” workflow class.

In its current 2.0 version, BPEL includes several control constructs: switch, pick,
while, for each, repeat until, wait, sequence and flow. Activities may include Web-
Service invocations, receive and reply and variable assignation. It proposes a fault handling
mechanism through the exit, throw, rethrow and compensate constructs. Because of
those control constructs, it is not possible to convert a BPEL workflow definition to a
DAG. In particular, it is not possible to determine the number of service invocations,
which may be dependent on the nature of the input data. That is why we put BPEL
orchestrations in the “functional with resource specification” class.
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YAWL. YAWL is built upon the Petri-Nets formalism. Its specification originates in
an exhaustive study of workflow managers with respect to a set of workflow patterns [38].
Thus, the goal of YAWL is to overcome the expressiveness limitations of the contemporary
workflow management systems. It is based on high-level Petri nets, to which extended
constructs such as advanced synchronization, multiple instances and cancellation patterns
are added, thus defining the extended workflow nets (EWF).

2.4 Tasks graphs

In tasks graphs, both functions and data are defined. A task is defined as the association
of a treatment (i.e a function) with data items (i.e the parameters of the function). In
this class of workflows, the tasks to be performed are completely defined: the workflow
representation specifies their number as well as their nature.

Tasks graphs can be characterized by the fact that the amount of execution tasks of
the workflow is known prior the execution. Consequently, tasks graphs have to be directed
acyclic graphs (DAGs) or at least to contain only bounded loops (i.e the ones for which the
number of iterations is known before run time). For the same reason, conditional operators
are not allowed in tasks graphs. The case of exceptions, compensation handlers, retries
allowed in case of failure and other fault-tolerance mechanisms has to be distinguished
from conditional operators. Indeed, even if those constructs lead to the generation of a
potentially unpredictable amount of tasks by the workflow, they only concern particular
execution conditions that are not supposed to occur in normal operation mode.

This class of workflows is intensively used in the development of parallel applications.
They are the most suitable representation for scheduling. Indeed, the only missing infor-
mation to have the workflow completely defined is the mapping onto resources, which is the
goal of scheduling. There is abundant literature about the scheduling of tasks graphs [18].

Condor DAGMan. Condor DAGMan [19] is one of the most used tools for tasks graphs.
It allows the user to define precedence constraints between Condor jobs that are submitted
to a pool of resources. So-called “pre” and “post” scripts may be defined to be executed
respectively prior or after the job itself. Fault-tolerance facilities are also available, such
as the ability to define a number of retry attempts in case of failure during the execution.

DIET MA-DAG. DIET is a grid middleware providing scalable scheduling facilities
for grid servers [6]. MA-DAG, a workflow management system has been developed on top
of it [3] and is based on a DAG model. This approach focus on scheduling, by offering
the ability to use different advanced algorithms. Multi-workflow scheduling is also under
investigation.

XWFL. The Workflow Enactment Engine (WFEE) uses the XML-based Workflow Lan-
guage (XWFL) [44]. This language allows users to describe tasks and their dependencies.
This language is made of three sections: parameter definitions, task definitions and data
link definitions. This language supports both abstract and concrete workflows: resources
can be specified so that we could also put this language in the executable class. Parameters
can be used in order to define parametric tasks as described in the previous paragraph.
Data links are then used to specify the tasks graph.
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GridAnt. GridAnt is the workflow manager built on top of the Java CoG Kit. GridAnt
is based on an existing commodity tool called Ant. Ant provides a flexible mechanism
to express script dependencies n a project build process. Apart from expressing task
dependencies, it also supports sequential and parallel execution constructs that allow sub-
tasks to be executed in sequence or in parallel. However, to support arbitrary control flows
through dependency graphs, one must support constructs that allow conditional execution,
block iteration (looping), exception and error handling and several other workflow patterns
defined by Van-der-Aalst [39]. Ant provides mechanisms only to direct the flow of control.
It lacks the infrastructure to support workflow composition allowing the output of one
activity to become the input to another. Through additional components in the GridAnt
system, we overcome this restriction, enabling GridAnt to support workflow orchestration
and composition [41].

GridAnt is included in Karajan. Karajan includes if,while and for constructs. Added
support for flow control constructs such as conditions and loops. Supports parallel loops
and parallel choice. Variables and operators. Lists and ranges [40].

Yvette ML. The YML framework defined YvetteML, a parallel programming language
which is used to model workflows [9, 8]. YvetteML includes a component model and a
graph description language. Components are defined as an encapsulation of task nodes of
a directed acyclic graph representing a complex application. They represent a chunk of
computation requiring no communication with the rest of the application. Components
are made of a so-called abstract declaration, which specifies the type and mode (in, out
or inout) of the parameters as well as a user-provided implementation that adds some
decorations to a C/C++, Fortran or Java code in order to be able to compile it on
different platforms. The YvetteML graph language is a control-flow language. Several
control constructs dedicated to parallel applications are present such as par do, seq do,
wait or signal. A typical example (extracted from [9]) of the YvetteML graph language is:

const problemSize := 10000;
event evt[2];
var MatrixReal vRes[1];
par(i:=1; problemSize) do

compute fillMatrixReal(vRes[i],problemSize,i);
signal(evt[i,1]);

end par do

The YML Framework interacts with the user using a compiler which translates components
into binary applications. The model of the YML workflow framework can contain loops,
iterations and branching: the compiler completely expands graphs to make them ready for
scheduling. Loops are unrolled, condition evaluated, unvisited branches spread out of the
graph and constants are propagated. The compiler translates applications described using
the YvetteML language to a set of components calls. Regarding our workflow classification,
the YvetteML compiler acts as a translator from a functional workflow instantiated on its
input data to a tasks graph. However, the dynamicity of the functional workflow approach
cannot be handled by YML and the number of tasks generated by the application is
foreseeable. That is why we put it in the tasks graph class. Yet, the YvetteML workflow
language seems very similar to the one of the Virtual Data Language [46].
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2.5 Executable workflows

Executables workflows correspond to the mapping of a tasks graph onto resources or the
instantiations of a flow of services onto data sets. This form is used for enactment only. It
does not provide any level of abstraction and therefore it does not raise any interest from
a user point of view.

2.6 Enacting workflows: from workflow “code” representation to exe-
cutable workflows

A workflow engine is needed to transform any workflow source code into an executable
list of tasks that can be submitted to a grid infrastructure. Depending on the workflow
language considered, the work and the possibility of the workflow engine differ. Task-based
workflows are graphs of computable tasks. The role of the enactor is then to schedule the
execution of these tasks on grid resources, respecting the dependencies defined. Conversely,
service workflows determine the resources to use. The role of the enactor is then to create
the data flows starting from the workflow input data sets described independently and
invoking the corresponding resources. Considering functional workflows, both data flow
composition and scheduling have to be considered.

To produce a concrete workflow, some tools use an intermediate representation ex-
plicitly. For instance, ICENI transforms so called execution plans (functional workflows,
considered as user views) into temporal views (tasks graphs). Askalon transforms AGWL
(functional) into CGWL (task graphs). Pegasus uses an execution planer to transform
VDL (functional) into concrete Pegasus (executable). Conversely, WS-based languages
such as WSFL, GSFL and Choregraphy (functional) produce BPEL code (service work-
flows). Hence, functional workflow language enactors have to make a choice between first
composing data flows (move from left to right column in figure 2) or first scheduling ex-
ecution (move from top to bottom row). In figure 2, the functional workflows have been
divided in two sub-sets depending on there enactment strategies: data composition first
(tasks graph production) or service localization first (service workflows).

The production of tasks graphs prior to the execution is only possible when the exact
data segments is known and all looping control structures are bounded. The workflow
languages are then limited to a restricted number of control structures and the users have
to produce explicitly data sets. If both conditions are not met, it is still possible to perform
scheduling on the fly but only considering sub-parts of the workflow for which all tasks
are known. This last minute instantiation of the data flows let more flexibility to the user
(no limitations on the control structures and more dynamic data sets) but prevent many
schedulers from operating optimally. It should also be noted that the service category of
workflow is very restrictive in a grid environment as it does not let a priori any flexibility
to schedule the resulting tasks on grid resources. This limitation is overcome by two
different engines where last minute location is implemented: in the case of GSFL, the
OGSA WS factory is used to instantiate services on the fly on grid resources while in the
case of MOTEUR, a specific grid interface WS is invoked that will delegate the handling
of the call to a grid scheduler.

Last minute data flows instantiation is needed to improve user-friendliness of tasks
graphs approaches and last minute location is needed to improve performance of service
approaches.
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3 Workflow languages evaluation criteria

3.1 Workflow languages and workflow engines

It is not always easy to separate workflow languages from the workflow engines used
for their enactment. It should be noted that in many cases, workflow languages are
syntactically defined but the precise semantics of their execution is not. Therefore, two
workflow engines for a same language can easily produce slightly different results especially
when considering parallel execution.

Workflows execution performances heavily depend on the workflow engine. Although
a language may represent parallelism, the enactor may or may not implement parallel
execution. For instance, the Scufl workflow description language is inherently data parallel
but the associated Taverna enactor was not designed to exploit grid resources and it limits
the execution to 10 parallel threads even if the user provides more than 10 independent
data fragments.

In section 3.3 we only focus on the languages, considering that different workflow
enactors could be implemented regardless of the current tool limitations.

3.2 Workflow languages and external codes

The aim of workflow languages is to orchestrate the execution of external scientific codes.
These codes are themselves written in highly expressive languages such as C++ or Java
that we will call native language by opposition to the workflow language. The execution
of a workflow causes the alternative execution of pieces of workflow and native code.

The workflow and native languages may have different levels of expressiveness: it
may be possible to represent in a piece of external native code some operations that a
workflow language could not express. For instance, the Scufl language does not provide
any expressions and therefore cannot represent control structures such as if or while
which test conditions should be represented as expressions. However, an external piece
of code could be executed that will evaluate any expression and depending on the result
produce some output that will modify the workflow execution procedure (decide on which
branch of the if to enact or loop in the workflow). Some authors have even reported more
indirect tricks to bypass the limitations of their workflow languages. For instance, a tasks
graph cannot represent loops but using the retry on fail capability of DAGMan, a smart
code can return errors on purpose to enforce the engine to retry and consequently loop on
a node5.

Such manipulations may enrich to some extend the workflow languages. However we
do not consider these as contributing to the expressiveness of workflow languages as they
depend on the writing of collaborative native code and they are usually reserved to expert
users. When an application developer is reaching the expressiveness limitation of her
workflow language, she should probably consider alternative languages.

3.3 Expressiveness

3.3.1 Turing completeness

In the case of programming languages, Turing completeness is often regarded has a refer-
ence in the language expressiveness as it implies the possibility to express any computable

5https://lists.cs.wisc.edu/archive/condor-users/2005-November/msg00000.shtml
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algorithm. Turing completeness can be considered for workflow languages as well, although
two points should be considered:

• As stated in the introduction, workflow languages are more focusing on expressing
non functional features (e.g. parallelism) that might not be available in the native
languages, and not necessarily any computable algorithm since a large part of the
application complexity is embedded in native scientific codes.

• Given that native codes such as C, that are known to be Turing complete, can be
embedded, Turing completeness can often be achieved by collaborative native code.
For instance, any workflow language may represent a single processor executing the
complete application written in C code. This ensures Turing completeness through
external native code but this does not provide any information on the workflow
language itself.

When not considering collaborative native code, most script-based language are probably
Turing complete (they embed same kind of expressions and control structures than C).
All tasks graphs-based approach cannot represent loops and therefore are not Turing
complete. In the literature, there is little information on the Turing completeness of the
various languages introduced in section 2.

3.3.2 Other formal evaluation methods

Schema relations and patterns may both be used to formally evaluate the expressiveness
of workflow languages. While schema relations provide comparison elements between
languages, patterns are more specific to the expressiveness of each language individually.

Schema relations. A concrete method to compare two workflow languages is to com-
pare semantically their XML schemas. In [27], such a method is applied to compare BPML
to BPEL4WS. The authors rely on previous works concerning the merging of heteroge-
neous data bases [7, 35] to compare different schemas. In [27], the authors conclude that
BPML and BPEL4WS are neither symmetric nor equivalent but that several of their con-
cepts overlap. This evaluation method is limited to XML-based workflow languages and
require intensive human input to define the semantics of the language control structures.

Workflow patterns. A more application-oriented method to evaluate a workflow lan-
guage is to test its ability to describe a set of workflow patterns [39]. In his thesis,
Kiepuszewski investigates methods to analyze control flow aspects of workflow specifica-
tions [15]. Before entering into formal considerations, he uses very pragmatic methods that
are the workflow test harness and workflow patterns. A mapping of workflows to Petri
Nets is then presented. Workflow patterns have only been tested for a limited number of
languages.

3.3.3 Expression of parallelism

The expression of parallelism, and especially data parallelism that is dominant in many
scientific applications, is of high interest for grid-enabled workflows. Out of the grid
community, many workflow languages do not provide parallel structures. Among the
parallel workflow languages, the expression of parallelism significantly differs depending
on the workflow representation adopted.
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Branch 1

Branch 1

Branch 2

Activity

{D0, D1, D2...}
Activity 0 D0

Activity1 D1

Activity 2 D2

Figure 5: Three kinds of parallelism: workflow parallelism (left), data parallelism (center)
and pipelining (right).

Any workflow graph of dependencies intrinsically represent some degree of parallelism:
two workflow nodes that are not the ancestor of one another can be computed indepen-
dently and therefore can possibly execute concurrently if they are available for processing
at the same time. Depending on the workflow language considered, additional degrees of
parallelism might be considered though. Figure 5 illustrates 3 kinds of parallelism that
can be envisaged. On the left, workflow parallelism is depicted: branches 1 and 2 can be
enacted in parallel. In the center, data parallelism is depicted: the activity can be fired
concurrently as many times as there are input data segments. The last level of parallelism
depicted on the right is a mix of code and data parallelism better known as pipelining: two
different activities can be fired concurrently for processing two different data segments.

Figure 6 depicts the different approaches to represent data parallelism in different
languages. In the tasks graph approach (right of figure 6), it is completely implicit in
the workflow graph. Any independent branch in the DAG can be enacted concurrently.
Therefore, there is no explicit parallel construct in the associated representation languages.
There is no explicit data transfer either: each workflow node is defined with a specific data
segment to process and two consecutive activities may or may not process the same data
segment. Hence, only temporal synchronization links are needed. In this approach, the
expression of data parallelism requires the replication of the DAG of processings over
all data fragments considered. This approach quickly becomes humanly intractable when
considering scientific application where tens to millions of data fragments may be involved.
An upper layer DAG generator is then needed.

For non-tasks graphs approaches, the workflow graph only implicitly represent code
parallelism. The expression of data parallelism depends on the constructs of the workflow
language considered. A large family of workflow languages use explicit parallel operators
(center of figure 6). For instance BPEL, which used to be a fundamentally sequential
language, was recently enriched with a foreach operator. Other dedicated languages
may include parallel control structures such as foreach or dopar. Among the languages
available, one can distinguish between bounded parallel constructs, for which the number
of tasks (the number of data fragments to process) is known in advance, and unbounded
constructs for which the number of tasks will only be discovered dynamically at run
time. In the first family, codes can be automatically translated in DAG representations
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Activity 1

Activity 2

Activity 3

{D0, D1, D2...}

foreach d in D {
    Activity1 (d)
}

D = {D0, D1, D2...}

Activity1(D0)

Activity1(D1)

Activity2(D0)

Activity2(D1)

Activity2(D2)

Activity3(D0)

Activity3(D1)

Activity3(D2)

Activity1(D2)

foreach d in D {
    Activity2 (d)
}

foreach d in D {
    Activity3 (d)
}

Figure 6: Data parallelism: completely asynchronous and transparent (left), explicit in
the language (center) and DAG implicit (right).

prior to execution. The second family is more flexible as the number of data segments
may depend on the computations but it prevents prior graph generation thus limiting
scheduling strategies that can be applied. Last minute sub-DAGs can still be generated
or the enactor has to deal with parallel execution by itself.

There exists an alternative approach to explicit language constructs, where data par-
allelism is implicit in the language (left of figure 6). In such languages, the data fragments
are not explicitly represented through variables. Only the data flows are represented and
data description is externalized. It is the combination of the description of the process
and the data sets to process that will implicitly produce parallel data flows. In Scufl for
instance, data fragments are not part of the language which only describes services to
enact. At run time, the Scufl enactor can make as many service calls as needed to process
all data segments that are dynamically discovered. Everything happens as if each service
was embedded in an unbounded foreach kind of operator. A major difference though is
related to the fact that foreach operators usually imply a data synchronization barrier
as explained in section 3.3.4.

3.3.4 Synchronization over data sets

When considering parallel execution, an important feature is the ability to synchronize
two concurrent flows. In workflows, code synchronization is obviously represented by the
workflow graph dependencies. But when considering concurrent execution over different
data sets, synchronization barriers concerning different data segments are not explicitly
represented in the workflow graph for non-tasks graphs approaches. Data synchronization
is differently handled depending on the workflow language considered. The semantics of
foreach kind of control structure is usually such that the parallel execution only starts
once all data fragments are available and the control flow will continue beyond the struc-
ture only once all data fragments considered have been processed: in other terms, it
enforces data synchronization for each activity inside the workflow but it prevents the use
of pipelining. This strategy may be valid for parallel architectures but it may become
very penalizing in the case of tasks submitted to grid infrastructures with highly variable
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execution times.
A major difference between a data parallel such as Scufl and parallel control structures

is that Scufl fires a service asynchronously for each data segment to be processed at the
time it becomes available. It thus exploits both data parallelism and pipelining. In Scufl
data synchronization can still be obtained through the semantics of control links: a control
link is blocking for a target activity as long as the source activity it depends on has not
completed (i.e. it has not processed all possible data segments in the workflow).

In both case (data parallel control structure or data parallel language), the synchroniza-
tion is concerning all the data fragments. One could imagine cases where synchronization
is only concerning a sub-group of data: Gwendia applications exhibit such use cases. A
more flexible data synchronization barrier expression mechanism is needed. It is possible
to deal with it using embedded workflows in Scufl but partial synchronization is not really
supported in the language itself.

In addition, it should be noted that synchronization over all data fragments may be
hard to achieve in an unreliable grid context where very large data sets may be used: for
instance in the drug discovery application of Gwendia, millions of concurrent processings
are envisaged and it is unlikely that none of them will fail for various reasons even using
retry on error policies. In many similar cases where it is more important to get a result
over the majority of data fragments rather than all data fragments it is useful to express
synchronization over approximately all data fragments. The fraction of admissible errors
has to be let to the user. To our knowledge, no language provide partial synchronization
nor approximately all synchronization capabilities.

3.3.5 Data composition strategies

In the discussion above and in figure 6, we have only considered services with single
input ports. It is common though that a service accepts multiple input ports receiving
multiple input data sets. The way data segments received on different ports are combined
for processing is explicit when considering languages with parallel control structure. For
instance for a service with to input data sets A and B, two embedded foreach loops on
the elements of A and B such as:

foreach a in A
foreach b in B
fire activity(a, b)

will cause the explicit invocation of the service |A| × |B| times.
A fully data-oriented language has no control operators but alternative iteration strate-

gies to deal with data flows composition. For instance, Scufl defines two basics iteration
strategies known as cross product and dot product illustrated in figure 7.

The most commonly used iteration strategy is the dot product corresponding to a one-
to-one composition of data segments: each data segment of the first set is composed with
the matching data segment of the second set in their order of definition, thus producing
min(|A|, |B|) results. This corresponds to the case where a sequence of pairs need to be
processed. Another common composition strategy is the cross product corresponding to
an all-to-all composition of data segments: all input data segments from the first set is
combined with all input data segment from the second set, thus producing |A|×|B| results.
The semantics of invocation for activities with more than two input ports is defined by
building an expression made of a binary tree of dot and cross-product operators which
leafs are the activity input ports.
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Figure 7: Scufl data composition operators. Left: dot product. Right: cross product.

It can be noted that the cross product semantics is almost equivalent to the embedded
foreach loops given above as an example. There is a significant difference though related
to data synchronization barriers: while the control structure will enforce synchronization,
a fully data-oriented language will not. Activities are fired as soon as data segments
become available and the iteration strategies are dynamically reevaluated each time new
input data segments become available.

Moreover, most workflow languages provide only the dot-product operator for data
composition. The semantics of this one-to-one composition is more difficult to define as it
relies on an association between pairs of data segments. In case of sequential execution,
the association is usually defined as the order of arrival of data segments in input ports.
In case of parallel execution, the association needs to be clearly defined as the order of
execution and data arrival is not guaranteed. In [29] we propose a clear semantics based
on the definition of groups of data sets.

The data composition strategies are a compact and powerful mechanism to describe
data parallelism without explicitly writing parallel code. To our knowledge, only Scufl
does introduce both one-to-one and all-to-all strategies. It does not clearly define the
semantics of the one-to-one composition in a parallel context though.

4 Summary

Table 1 summarizes the main criteria that are discussed in this document for a number
of workflow languages that are representative of the different categories identified. The
languages summarized here are all of interest for the Gwendia applications in the sense
that they provide some level of data parallelism.

4.1 Workflows expressiveness

The model line in table 1 refers to an existing formal description model. The rest of the
table lines are grouped by kind of criteria: related to expressiveness, other properties of
interest and implementation. The expressiveness is qualified depending on:

• Existing control structures: graphs of tasks do not include control structures while
functional languages provide classical control structures (conditional and loops).
Scufl is a particular language that is purely based on data flow definitions and for
which only a particular implementation of the conditional is provided. YAWL does
not provide traditional control structures but rely on patterns instead.
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• Existing unbounded operations: only languages that are not instantiated in a con-
crete graph prior to the execution can represent unbounded control structures.

• Expression of data parallelism: data parallelism might be implicit (graphs of tasks),
explicit (foreach kind of control structure) or inherent to the language (pure data
flows).

• Existing data links: some languages only propose control links (or coordination
constraints) while other include data transfer links.

• Existing iteration strategies: only Scufl implements different iteration strategies to
our knowledge.

• Patterns that can be represented: YAWL has been designed to enact a broad vari-
ety of patterns. Some of these patterns are expressible in other languages but an
exhaustive study of all patterns and their equivalence to other control structures for
different languages should be performed.

The other properties of interest are:

• Data types description: in many cases, the workflow is defined independently from
the data to process although in some cases the language include data types descrip-
tion and type checking is possible. For all workflow managers enacting Web-Services,
the workflow language itself does not include data types but they can be found in
the WSDL document describing the services enacted.

• The ability to provide a schedule: definitely true for tasks graphs, only last minute
instantiation schedules can be created for the most expressive languages (with un-
bounded control structures or undetermined data sets). For service workflow lan-
guages, no schedule is usually possible although last minute location has been im-
plemented in some cases.

• Turing completeness: this property is rarely demonstrated although highest level
languages (with control structures) are probably Turing complete while tasks graphs
are probably not. Scufl has been demonstrated to be Turing complete if the transition
function is implemented in native code [14].

Often, there exists a single enactor for each workflow language although some exceptions
can be found. Many remote invocation code strategies are envisaged including Web Ser-
vices, GridRPC and Condor jobs submission.

4.2 Workflow languages in Gwendia

This study shows that a trade-off has to be found between workflow languages expressive-
ness and the efficient scheduling of the tasks generated by a workflow engine. Functional
and service-based languages provide more flexibility to the users with the availability of
loops and unbounded control structures. Conversely, tasks graphs are providing fixed
topology graphs that can be scheduled more efficiently. In the context of the Gwendia
project, we plan to explore both approaches.

From a user point of view, functional languages seem to be the most interesting ap-
proach. In the context of scientific applications, the expression of data parallelism is also
mandatory. We are interested in the Scufl language for its capability to represent complex
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data flows in a compact framework through its unique data composition operators. Scufl
can indeed represent the applications of the Gwendia project and does not require from
the user more than describing the data flows. A priori the parallel enactment is limited
by the service approach adopted but last minute location proved to be an effective way
of ensuring parallel enactment on a grid. It could be interesting to consider extensions
of this language with loops and conditionals to obtain a language that is both provid-
ing unbounded control structures and iteration strategies. However, this would require
significant changes in the language with addition of expressions.

From an optimization point of view, tasks graphs are preferable. In the case of large
scale data parallel applications, the very large DAGs needed cannot be produced by hand
though. In the context of the Gwendia project, we plan to generate the application DAGs
automatically to provide a fixed set of tasks to the scheduler. This will be possible by
performing some processings prior to the DAGs generation to determine the exact number
of data fragments to consider. This will impose some limitations on the applications but
the benefit in terms of performances has to be estimated.
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