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ABSTRACT

We consider a recent parametric level-set segmentation ap-
proach where the implicit interface is the zero level of a con-
tinuous function expanded onto compactly supported radial
basis functions, defined by their centers, coefficients and sup-
ports. We propose to introduce prior knowledge of the shape
to be recovered by placing the centersquasi-uniformlyover
an uncertainty area.

Index Terms— Segmentation, Parametric Level-Set, Com-
pactly Supported Radial Basis Functions, Model-Based.

1. INTRODUCTION

Image segmentation remains a challenging task required in
many applications, in particular in medical imaging, where
different imaging modalities such as PET, CT, MR or ultra-
sound imaging provide a wide range of image processing prob-
lems. Fully automated image processing is critical for con-
ducting large medical investigations or providing quantitative
information in routine examinations.

Over the last decades, research in segmentation has been
extremely active, especially in medical imaging. It still is a
very difficult problem, its success often relies on the use of
strong priors of shape and appearance. In most cases the
shape of the anatomic feature is approximatively known, or
some statistics regarding the shape can be extracted. Such
knowledge can be used, as well, to construct a geometrical
and statisticala priori model of the anatomical feature of in-
terest.

Among segmentation methods, active-contours appear to
be one of the best suited for model based applications. These
methods consist in capturing a shape by propagating an inter-
face which evolves according to the solution of a Partial Dif-
ferential Equation (PDE). Differences between approachesre-
side in the interface representation and in the forces which
deform the interface along iterations. The interface can be
represented explicitly as with snakes [1], or implicitly like in
level-set approaches.

Since their introduction [2], level-set approaches have been
implemented by finite-differences on the whole domain, or
on a restricted area around the implicit interface. Recently
in [3], authors proposed a new approach which can be seen

as aparametric level-set, where the implicit interface is con-
tinuous and represented by a set of parameters corresponding
to the expansion coefficients of the implicit function on a set
of compactly supported radial basis functions (CSRBF). This
new formalism for level-set approaches provides a much more
flexible framework, where geometrical constraints can be di-
rectly added into the representation itself.

In this paper, we propose the introduction ofa priori knowl-
edge into this new approach. On the one hand, we restrict the
investigation domain to a region of interest around the givend

dimensional model interface. On the other hand, we adapt the
set of CSRBF to this investigation domain in order to get the
best trade-off between the approximation order of the implicit
function and robustness of the level-set through its evolution.

2. CSRBF COLLOCATION BASED LEVEL SET
METHODS

In the level-set formalism, the interfaceΓ in R
d is represented

as the zero level-set of a continuous functionf of dimension
d + 1, satisfying:











f(p, t) > 0, for p ∈ Ωin(t),

f(p, t) < 0, for p ∈ Ωout(t),

f(p, t) = 0, for p ∈ ∂Ωin(t) = Γ(t) .

where, considering an open regionΩ in R
d+1, Ωin is a region

in Ω bounded byΓ. Ωout is defined asΩout = Ω \ Ωin.

The problem of segmenting an object is typically handled
by the evolution of one level-set according to the following
general equation:

∂f(p, t)

∂t
+ 〈V (p, t), ∇f(p, t)〉 = 0, (1)

where〈·, ·〉 denotes the standard dot product, andV is a ve-
locity vector field that could originate from an energy min-
imization process, or that could be provided directly by the
user.

In [3], authors decompose the implicit functionf on a
basis of CSRBFs:

f(p) =

N−1
∑

i=0

αi · φ

(

‖p− ci‖

σ

)

, ∀ p ∈ Ω (2)



whereφ = φd,k is a CSRBF [4] (d is the dimension andk
is the desired continuity order),σ is the support size,C =
{ci}

N−1

i=0
is the set of CSRBF centers, andα = {αi}

N−1

i=0
are

CSRBF coefficients. Then they assume that the solution of
the level-set PDE (Eq.1) is space and time separable, i.e. the
time dependence off is only due to the CSRBF coefficients:

f(p, t) =

N−1
∑

i=0

αi(t) · φi (p) , φi(p) = φ

(

‖ci − p‖

σ

)

(3)

Substituing Eq.3 into Eq.1 yields an Ordinary Differential
Equation (ODE) for CSRBF coefficients which applies to any
pointp of the domainΩ. In order to solve the level-set evolu-
tion, this equation has to be sampled atN distinct points that
were chosen to be the CSRBF centers. This leads to solve the
following ODE:

H ·
dα(t)

dt
= −B(α(t), t), (4)

whereHij = φi (cj) is aN×N sparse matrix, andB(α(t), t)
is a column vector related to the level-set formalism used in
Eq.1:

[B(α(t), t)]i = 〈V (pi, t), ∇Φ(pi) ·α(t)〉

∇Φ(p) =
[

∇φ0(p), . . . , ∇φN−1(p)
]

By using the conventional forward Euler method, the res-
olution of this ODE amounts to solve the following linear sys-
tem:

αn+1 = αn − τ ·H−1 ·Bn(αn), (5)

with τ the step size.
Finally at each iteration, the following algorithm results


























L · un = Bn(α̃n) (6)

LT · vn = un (7)

αn+1 = α̃n − τ · vn (8)

α̃
n+1 =

β

‖αn+1‖1
·αn+1, if‖αn+1‖1 > β (9)

whereβ is a normalization factor. The last operation in Eq.9
is presented as a constraint on the implicit function value and
gradient norm value during the evolution of the implicit inter-
faceΓ0.

3. OUR CONTRIBUTION

3.1. Introduction

In [3], the authors propose to locate CSRBF centers on ad-di-
mensional regular grid (i.e. a regular square grid) whenever
no prior information about the shape to be recovered is pro-
vided. The CSRBF support size is then deduced from the
center distribution.

Due to the iterative method used in [3], theH matrix
should be well-conditionned in order to avoid large numer-
ical errors at each iteration.

Definition 1. Theseparation distanceof a given point setP =
{pi}

N−1
i=0 is defined as follows:

qP =
1

2
min
i6=j
‖pi − pj‖.

Definition 2. Thefill distanceof a given point setP = {pi}
N−1
i=0

in a given domainΩ is defined as follows:

hP,Ω = sup
p∈Ω

min
pj∈P

‖p− pj‖

Definition 3. A given point setP = {pi}
N−1
i=0 is said to be

quasi uniformwith respect to a constantcqu if

qP 6 hP,Ω 6 cqu · qP

According to [5], aquasi-uniformcenter setC with an
appropriate support size, i.e.σ = k · hC,Ω, provides an ex-
cellent trade-off between the approximation order for the im-
plicit functionf and the condition number ofH .

Thus, we propose here a new and original method to find
an adapted center distribution which ensures itsquasi uni-
formity, where the domainΩ is chosen according to a given
model in any dimensiond.

3.2. Statement

We consider that the model is expressed by an implicit func-
tion f0 and its corresponding implicit interfaceΓ0, that could
be provided by a shape model, an atlas or by any implicit in-
terface reconstruction method [6,7].

First, we define the domainΩ according to the model im-
plicit function. We assume that the object to be segmented
is not too far from the given model interface. To this end,
we define an uncertain area which corresponds to the max-
imal admissible distance from the model to the object to be
segmented. Then, all centersci should be located inside this
uncertainty area, which is determined by setting the parame-
terD in Eq.10.

In order to produce aquasi uniformcenter setC in Ω, we
impose the distance to the closest center for each centerci

(Eq.11).
The algorithm should satisfy the two following constraints:

{

|f0(ci)| 6 D (10)

min
cj∈C
‖ci − cj‖ = R (11)

whereD andR are fixed positive parameters.



(a) (b)

Fig. 1. The uncertainty area (a) is represented in blue (its
thickness is2 · D). A few centers are represented such that
their closest neighbor is at a distance ofR (b).

3.3. Proposed Algorithm

In order to fulfill both conditions (Eq.10-11), we propose an
algorithm in the spirit of [8].

Consider a given implicit functionf0, and a givend di-
mensional gridI on whichf0 is sampled. Depending on the
implicit function value at its corresponding locationp, one
grid noden is labelled, by the LABELELEMENTS procedure,
as ALIVE (if |f0(p)| < D), or DEAD.

We select one nodeu from the border between ALIVE

and DEAD labelled elements, via the SELECTNODE proce-
dure. The corresponding locationp of this node is added to
the center setC. Then, all ALIVE nodesn such that the eu-
clidean distance tou is belowR are labelled as DEAD by the
K ILL NODES procedure. These last processes are iteratively
repeated until there are no more ALIVE nodes. The algorithm
is summarized in Algorithm 1 and illustrated in Fig.2.

Algorithm 1 Compute Centers (f0, D, R, I )
1: procedure COMPUTECENTERS(f0, D, R, I)
2: C ← ∅
3: ALIVE , DEAD← LABELELEMENTS(f0,I,D)
4: repeat
5: u←SELECTNODE(ALIVE , DEAD)
6: C ← C ∪ {u}
7: K ILL NODES(u,R,ALIVE , DEAD)
8: until Card(ALIVE) = 0
9: end procedure

4. RESULTS AND DISCUSSION

We have implemented the proposed method for any dimen-
siond. Here we present some results ford = 2 and3.

4.1. 2D Case

In order to illustrate our proposed method, we consider a sam-
ple numerical model of a mouse foetus (see Fig.3(a)). The
corresponding implicit functionf0 has been created by ap-
plying a2D version of [7].

Fig. 2. The top row shows nodes labelled as ALIVE , with
the corresponding center setC on the bottom row, at different
iteration steps.

Center distribution

Fig.3(b) shows the center distribution inside the investigation
domainΩ next to its zero set. It shows that the constraint
on the distance from one center to its closest neighbor holds,
and the quasi-uniformity of the center set inΩ. Note that our
proposed method can be used for disconnected components,
various topologies, and non-convex elements, as well.

(a) (b)

Fig. 3. Numerical mouse foetus contour model (a). Center
distribution (b) inside the investigation domainΩ satisfying
constraints in Eq.10-11.

Segmentation

From the constructed implicit functionf0, used as an initial-
ization for the segmentation, we apply the process presented
in section 2, more precisely Eq.6-9 in order to extract the syn-
thetic foetus model on the2D numerical simulation.

Eq.1 requires that a velocity functionV (p, t) be derived
from the image data, in order to drive the interface towards
the image contours. Since we sample the function at the cen-
ters’ locations on the whole investigation domainΩ (not only
near the interface), we must ensure that the direction of the
velocity term stays consistent insideΩ. One method that pro-
vides a consistent velocity field even far from the interfaceis
the GVF [9]. Fig.4 shows an example of segmentation using
the GVF on a synthetic model.



(a) (b) (c)

Fig. 4. Sample segmentation results: The synthetic mouse foetus image to be segmented (a); Initialization of the implicit
function (b) according to the foetus model (Fig.3(a)); Resulting implicit function (c).

4.2. Center distribution over a 3-dimensional domain

In order to show the potential of our method in 3D, we applied
it to a 3D synthetic model with two cavities. The resulting
placement of centers can be seen on Fig.5.

(a) (b)

Fig. 5. On the left, 3D synthetic model with two cavities and
non-convex borders. On the right, placement of centers inside
an uncertainty zone near the model.

4.3. Discussion

We have presented a novel algorithm for center placement in a
model-based parametric level-set framework and some results
on synthetic data. Further work will include the use of this
method to place CSRBF centers, and the validation on real
medical data using existing models.
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dation pour la Recherche Ḿedicale, the ACI-AGIR and the
ANR-GWENDIA projects.

6. REFERENCES

[1] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Ac-
tive contour models,”International Journal of Computer
Vision, vol. 1, no. 4, pp. 321–331, 1988.

[2] S. Osher and J.A. Sethian, “Fronts propagating
with curvature-dependent speed: algorithms based on
Hamilton-Jacobi formulations,” Journal of Computa-
tional Physics, vol. 79, no. 1, pp. 12–49, 1988.

[3] A. Gelas, O. Bernard, D. Friboulet, and R. Prost, “Com-
pactly supported radial basis functions based collocation
method for level-set evolution in image segmentation,”
IEEE Trans. on Image Processing, 2007, (in press).

[4] H. Wendland, “Piecewise polynomial, positive definite
and compactly supported radial basis functions of mini-
mal degree,” Adv. Comput. Math., vol. 4, pp. 389–396,
1995.

[5] H. Wendland,Scattered data approximation, Cambridge
University Press, 2005.

[6] Y. Ohtake, A. Belyaev, and H.-P. Seidel, “A multi-scale
approach to 3d scattered data interpolation with com-
pactly supported basis functions,” inIEEE SMI 2003,
Seoul, Korea, 2003, pp. 153–161.

[7] A. Gelas, Y. Ohtake, T. Kanai, and R. Prost, “Approxima-
tion of unorganized point set with composite implicit sur-
face,” in IEEE ICIP’06, Atlanta, 2006, pp. 1217–1220.

[8] J. Lotjonen, P.J. Reissman, I.E. Magnin, J. Nenonen, and
T. Katila, “Triangulation method of an arbitrary point set
for biomagnetic problems,”IEEE Trans. Magnetics, vol.
34, no. 4, pp. 2228–2233, 1998.

[9] C. Xu and J. L. Prince, “Snakes, shapes, and gradient
vector flow,” IEEE Trans. on Image Processing, vol. 7,
pp. 359–369, 1998.


