
Gwendia ANR-06-MDCA-009
Grid Workflow Efficient Enactment for Data Intensive Applications

Workflow language proposal

Johan Montagnat MODALIS (I3S) johan@i3s.unice.fr
Benjamin Isnard GRAAL (LIP) benjamin.isnard@ens-lyon.fr
Tristan Glatard CREATIS-LRMN glatard@creatis.insa-lyon.fr
Mireille Blay Fornarino MODALIS (I3S) blay@polytech.unice.fr
Ketan Maheshwari MODALIS (I3S) ketan@polytech.unice.fr

Abstract

Workflow language proposal for the Gwendia project. Emphasize on control struc-
tures.

Gwendia ANR-06-MDCA-009

1 Motivation and goals

<to be completed>.

1.1 Data-driven parallel execution

We adopt a data-driven parallel execution model that ease parallel processes description
from a user point of view and make graphical representation possible (both compact and
easy to represent graphically the application logic graph).

1.2 Array programming

Arrays, also known as lists (especially in the functional programming context) or vectors
(especially in the parallel computing community), are first class objects in the language.
The manipulation of nested arrays is common. Arrays are manipulated through:

• array nesting level consideration: an array may be manipulated as a single data item
or as many individual data items (each of them possibly being a nested array); and

• multiple arrays are combined through various iteration strategies (also known as
array operators).

1.3 Motivations for a new scientific workflow language

The languages targets the coherent integration of:

1. the data-driven approach;

2. arrays manipulation;

3. control structures; and

4. maximum asynchronous execution (the operators should be implemented so as to
introduce as little synchronization barriers as possible).

2 Language structures

The language enables the description of data to be manipulated, processing activities
(interconnected through data dependencies) and control structures.

2.1 Data

The data manipulated in the language is composed from scalar typed data items. Data
with homogeneous types may be grouped in arrays. Arrays may contain nested arrays.
As will be shown below, nested arrays may have heterogeneous sizes (two inner arrays of
different sizes may appear in a same container array).

2

Gwendia ANR-06-MDCA-009

2.1.1 Scalars

Scalar values are typed. The basic types considered are integer, double, string and
file (i.e. string identifiers referencing files, that are not interpreted by the workflow
manager). The special scalar value Ø represents the absence of data. It is to be noted
that the special value Ø has an instantiation in each scalar type: it may denote a non-
existing integer Øinteger, a non-existing string Østring, etc. For simplification, we will use
the non-subscripted notation Ø in all cases in the rest of this document. Formally, a scalar
type (s) is defined as follows:

s ::= integer |double | string |file

2.1.2 Data structures and arrays

A data structure is a fixed size heterogeneous collection of data items. The type of a
structure is inferred from the types of its composing data items and the cross operator:
given n items typed τi with i ∈ [1..n], the type of the corresponding structure is τ1×. . .×τn.

An array is an ordered collection of data items with the same type. A simple array is
a collection of scalars (e.g. a = [2,−3, 1] is an array of integers). A one-dimension index
designates each of its data item (a0 designs the integer 2). Whe denote as A(τ) the type
of an array of type τ items. An array may be empty. An array may contain other arrays
at any nesting level. An array of arrays is further referenced as a 2 nesting levels array.
Each additional nesting level increases the nesting level counter by 1. For convenience, we
will denote the nested array type A(A(. . . A(τ) . . .)) with n nesting levels as An(τ). Note
that a scalar s and a singleton {s} are different data entities, with different types s and
A(s) respectively. A scalar data item corresponds to a 0 nesting level array: s = A0(s).

Any type is defined by:
τ ::= s |A(τ) | τ × τ |1

where the cross operator designates the type of a pair of data items. It can be used to
represent either a data structure or the output of a processor with two output ports. Ø
also has an additional instantiation to describe the particular case of a workflow with no
output. Its type is 1.

As usual in language syntax definition, we define a context Γ as a list of typed variables
x1, . . . xn:

Γ ::= x1 : τ1, . . . , xn : τn

where τi is the type of xi.

2.1.3 Loose typing option

For prototyping, developers may want to adopt a losy type checking system. In that case,
all scalar data items may be considered as string: s ::= string. The rest of this document
remains valid with or without the loose type checking assumption.

2.2 Workflows

Workflows are described as a graph of activities interconnected through data dependency
links. Each activity correspond to the execution of some application code. Activities are
fired as soon as input data become available for processing. Activities may be fired an
arbitrary number of times, or never fired at all, depending on the data flowing in the

3

Gwendia ANR-06-MDCA-009

workflow. The special data item Ø causes no firing of an activity. It is transferred to the
subsequent activities without causing user code invocation.

As described in [1], workflows with input context Γ and output type τ are formally
represented as sequents of the form:

Γ `W : τ

2.2.1 Activities

A workflow activity is an atomic process containing a piece of application code that is
bound to an arbitrary number of input and output ports. The ports represent data buffers
where data items to process are received (input ports) or produced data items are stored
after firing the activity (output ports). Input and output ports are typed (only data
matching the input port types can be processed and data produced matches the output
port types). The output port types define the activity type. Formally, a workflow activity
a which output type is τ is an axiom:

Γ ` a : τ

Upon firing, an activity may either execute successfully, thus producing an output of type τ
(possibly the special value Ø), or encounter an error an throw an exception. An exception
cause the workflow engine to be notified of the error (user reporting) and produce the
special value Ø as the result of the execution. An activity which receives Ø as input
does not fire and just pass the value on to the subsequent activity(ies). This execution
semantics guarantees that the process continues execution as much as possible, processing
other data items that did not raise exception conditions.

Workflow inputs are special activities, with no input port and a single output port,
that fire without pre-requesite when the workflow is started. Valid workflow inputs are (i)
data sources, containing user defined data, (ii) constants, containing a single value (scalar
or singleton), or (iii) user defined activities with no input ports that will fire only once,
when the workflow is started. For instance:

` source0 : τ

Workflow outputs are special activities, with no output port and a single input port,
that perform no processing and collect results received from other activities in the work-
flow. We consider that the type of an output is the type of its input ports (i.e. the type
of the data received on its input ports):

x : τ ` output0 : τ

Regular activities (also called processors) are user defined activities . They usually
have at least one input and one output port, although some user-defined processors may
have no input port (user-defined input) or not output port (workflow dead-end without
result collection). A processor with more than one output port as a product type. For
instance, if p is a processor with two output ports of type τ and σ respectively, then the
processor type is:

Γ ` p : τ × σ

Similarly, two workflows with no junction links produce a product type of their respective
outputs.

4

Gwendia ANR-06-MDCA-009

2.2.2 Activity port depths

The depth of processor input ports define the nesting level of arrays that this processor
will consider atomically (and therefore it impacts the number of firing of this processor).
Similarly, the depth of processor output ports, in conjunction with the nesting level of
data item received, defines the nesting level of arrays that this processor will produce.
Let us denote with exponent n the nesting level of an array: An(s), with A0(s) = s and
A1(s) = A(s). A processor p with a single input port of depth i (type s) and a single
output port of depth o (type t) fires once for each nested data item with i nesting levels
received, and produces a depth o output for each of these invocations. Therefore, if n ≥ i:

Γ, x : An(s) ` p : An+o−i(t)

If n < i the processor invocation raises an exception.
As a consequence, input and output port types are always defined as a scalar type

s, complemented with a depth. The array nesting level of input data items, n, varies
independently of the processor definition (the only constraint is that n ≥ i, consequently
there is no constraint for depth 0 input ports which consider individual scalar items).
Similarly, the nesting level of data item produced, n + o − i depends on n and therefore
the type of data item received.

An important property of activities invocation in an asynchronous execution is that
multiple invocations of an activity on array items preserve the array indexing scheme.
The data indices are preserved during processing: the jth data item in the output port
will correspond to the processing of the jth data item in the input port. This property is
reflected in the operational semantic rule:

P ⇓ u {Q[ui/x] ⇓ vi}∣∣i=1..|v|

let x← P in Q ⇓ v

where u = [u1, . . . , um] is a n nested levels array and v = [v1, . . . , vm] is a n+ o− i nested
levels array.

2.2.3 Data links

A data link interconnects one activity output port with one activity input port. It defines
a data dependency between two activities. A link is formally represented as a composition
rule. If the output ports of an activity a1 are linked to the input ports of an activity a2

and if the port types match, the connection is represented by:

Γ ` a1 : τ1 Γ, x : τ1 ` a2 : τ2
Γ ` let x← a1 in a2 : τ2

This definition prevents multiple links to be linked to a single input port. Note however
that different outputs of a1 may be connected to different activities, which is formally de-
scribed through projection rules to separate a1’s outputs prior to applying the composition
rule:

Γ ` a1 : σ × τ
Γ ` fst(a1) : σ

Γ ` a1 : σ × τ
Γ ` snd(a1) : τ

With projection any workflow graph can be assembled, and the composition rule can be
rewritten to apply to any workflows W and X with W ’s outputs connected to X’s inputs:

Γ `W : σ Γ, x : σ ` X : τ
Γ ` let x←W in X : τ

5

Gwendia ANR-06-MDCA-009

2.2.4 Control links

In some cases, there is no data dependencies explicitly defined between two processors
but an order of execution should be preserved nevertheless. A control link interconnecting
these processors may then be defined. A control link interconnecting a source to a target
processor emit a signals only once the source processor completed all its executions. The
target processor will start firing only once it has received the control link signal, processing
the data items buffered in its input ports or to be received, as usual. In case several control
links are connected to a target processor, it only starts firing when all control signals have
been received. In an asynchronous execution environment, a control link thus introduces
a complete data synchronization barrier.

2.2.5 Iteration strategies

Iteration strategies define how input data items received on several input ports of a same
processor are combined together for processing. They therefore define how many times a
processor fires and what is its exact input data sequence for each invocation. Iteration
strategies are also responsible for defining an indexing scheme that describes how items
from multiple input nested arrays are sorted in an output nested array.

dot product. The dot product matches data items with exactly the same index in an
arbitrary number of input ports. The dot product formal syntax is:

Γ ` P1 : A(σ1) Γ ` P2 : A(σ2) Γ, x1 : σ1, x2 : σ2 ` Q : τ
Γ ` let x1 � x2 ← P1 � P2 in Q : A(τ)

where (let x1�x2 ← P1�P2 in Q) is a primitive conforming to the dot product semantics.
The processor fire once for each common index, and produces an output indexed with the
common index. The nesting level of input data items, as received and transformed after
port depth considerations, in all ports of a dot product should be identical. The number
of items in all input arrays should be the same. Hence:

P1 ⇓ u P2 ⇓ v {Q[ui/x1, vi/x2] ⇓ wi}∣∣i=1..|u|
|u| = |v|

let x1 � x2 ← P1 � P2 in Q ⇓ w

The ports of a dot product are associative and commutative. A Ø value received on a
dot product port matches with the data item(s) with the same index(ices) received on the
other port(s) and produces a Ø output without firing the activity.

cross product. The cross product matches all possible data items combinaisons in an
arbitrary number of input ports. The processor fires once for each possible combinaison,
and produces an output indexed such that all indices of all inputs are concatenated into
a multi-dimensionnal array (data items ai and bj received on two input ports produce a
data item cij).

Γ ` P1 : A(σ1) Γ ` P2 : A(σ2) Γ, x1 : σ1, x2 : σ2 ` Q : τ
Γ ` let x1 ⊗ x2 ← P1 ⊗ P2 in Q : A2(τ)

where
let x1 ⊗ x2 ← P1 ⊗ P2 in Q ≡ let x1 ← P1 in (let x2 ← P2 in Q)

6

Gwendia ANR-06-MDCA-009

and
P1 ⇓ u P2 ⇓ v {{Q[ui/x1, vj/x2] ⇓ wij}}˛̨̨

i=1..n
j=1..m

let x1 ⊗ x2 ← P1 ⊗ P2 in Q ⇓ [[w11 . . . w1m] . . . [wn1 . . . wnm]]

The ports of a cross product are associative but not commutative. A Ø value received on
a cross product port matches with all possible combinaisons of other data items received
in other ports and produces a Ø output without firing the activity. The cross product
formal syntax is:

flat cross product. The flat cross-product matches inputs identically to a regular cross
product:

Γ ` P1 : A(σ1) Γ ` P2 : A(σ2) Γ, x1 : σ1, x2 : σ2 ` Q : τ
Γ ` let x1 	 x2 ← P1 	 P2 in Q : A(τ)

The difference is in the indexing scheme of the data items produced: it is computed as a
unique index value by flattening the nested-array structure of regular cross produces (ai

and bj received on two input ports produce a data item ck with index k = i×m+ j where
m is the size of array b):

P1 ⇓ u P2 ⇓ v {{Q[ui/x1, vj/x2] ⇓ wi×m+j}}˛̨̨
i=1..n
j=1..m

let x1 	 x2 ← P1 	 P2 in Q ⇓ [w1 . . . wnm]

As a consequence, the flat cross product may be partially synchronous. As long as the
input array dimension are not known, some indices cannot be computed. Similarly as the
cross product, the ports of a flat cross product are associative but not commutative. A
Ø value received on a flat cross product port behaves as in the case of a regular cross
product. The formal syntax of the flat cross product is the same as the cross product’s
one.

match product. The match product matches data items carrying one or more identical
user-defined tags, independently of their indexing scheme.

Γ ` P1 : A(σ1) Γ ` P2 : A(σ2) Γ, x1 : σ1, x2 : σ2 ` Q : τ
Γ ` let x1 ⊕ x2 ← P1 ⊕ P2 in Q : A2(τ)

where (let x1 ⊕ x2 ← P1 ⊕ P2 in Q) is a primitive conforming to the match product
semantics. Similarly to a cross product, the output of a match is indexed in a multiple
nesting levels array item which index is the concatenation of the input indices. A match
product implicitly defines a boolean valued function match(ui,vj) which evaluates to true
when tags assigned to ui and vj match (i.e. the specified tags values are equal). The
output array has a value at index i, j if match(ui,vj) is true. It is completed with Ø
values: if match(ui,vj) is false then wij = Ø.

P1 ⇓ u P2 ⇓ v {{Q[ui/x1, vj/x2] ⇓ wij}}˛̨̨̨
˛i=1..n
j=1..m
match(ui,vj)

{{wij = Ø}}˛̨̨̨
˛i=1..n
j=1..m
¬match(ui,vj)

let x1 ⊕ x2 ← P1 ⊕ P2 in Q ⇓ [[w11 . . . w1m] . . . [wn1 . . . wnm]]

The ports of a match product are thus associative but not commutative. A Ø value
received on a match product input does not match any other data item and does not
cause processor firing.

7

Gwendia ANR-06-MDCA-009

2.3 Control structures

The data-driven and graph-based approached adopted in the Gwendia language makes
parallelism expression straight forward for the end users:

• Data parallelism is completely hidden through the use of arrays. Advanced data
composition operators are available through activity port depth definitions and it-
eration strategies. Complex data parallelisation patterns and data synchronization
can therefore be expressed without additional control structures. foreach kind of
structures that are usually used for explicit data parallelization is no needed.

• Code parallelism is implicit in the description of the workflow graph. fork and join
kind of structures are not needed either.

The only control structures considered for the Gwendia language are therefore condition-
als and loops. The semantics of contional and loops operating over array types need to
be precisely defined. To our knowledge, existing array-based languages do not define such
a semantic and the programmer needs to define the conditional and loop expressions on
scalar values (consequently using foreach kind of structures to iterate on the content of
arrays).

Special activities are defined to express conditionals and loops. These activities have
a constrained format and input/output ports for enforcing the semantics defined in this
document.

2.3.1 Beanshell processors

Conditional and loop expression computations are better understood by analogy to bean-
shell processors. A beanshell is a fully customizable processor (no restrictions on in-
put/output ports) embarking user-defined java code to be interpreted each time the pro-
cessor is fired. The data received on the input ports of a beanshell processor is mapped to
java variables (basic types or java ArrayLists depending on the input port depths) and,
similarly, values stored in java variables are mapped to output ports after computation.
Beanshells can be used to evaluate expressions such as the one needed for conditionals or
loop stop conditions.

2.3.2 Conditionals

A conditional activity represents an array-compliant if then else kind of structure. A
conditional has:

1. an arbitrary number of input ports (possibly operating iteration strategies);

2. a test expression to evaluate for each data received from the input ports; and

3. an arbitrary number of special paired output ports. Each pair corresponds to a
single output with the first pair element linking to the then branch and the second
pair element linking to the else branch.

Let cond(x) represent the test expression evaluated on value x:

Γ ` P : A(σ) Γ, x : σ ` cond(x) : A(bool) Γ, y : A(σ) ` Q : A(τ) Γ, y : A(σ) ` R : A(τ)
Γ ` let x← P in if cond(x) then (let y ← P in Q) else (let y ← P in R) : A(τ)×A(τ)

8

Gwendia ANR-06-MDCA-009

The test expression is evaluated each time the conditional processor fires. A user-defined
result is assigned to the then, and optionally to the else, output port for each data sequence
evaluated. An empty result (Ø) is assigned to the opposite port automatically. Conse-
quently, the then and the else output ports receive a nested array with the same structure
and size, as defined by the input nesting levels, ports depths and iteration strategies used,
but complementary in the sense that if a value is available in one of the ouput, the corre-
sponding item is empty in the other output and vice versa. The indexing scheme used is
coherent with the usual indices computed by iteration strategies. The empty results are
therefore indexed coherently.

P ⇓ u {Q[ui/y] ⇓ vi}˛̨̨
i=1..n
cond(ui)

{vi = Ø}˛̨̨
i=1..n
¬cond(ui)

{R[ui/y] ⇓ wi}˛̨̨
i=1..n
¬cond(ui)

{wi = Ø}˛̨̨
i=1..n
cond(ui)

let x← P in if cond(x) then (let y ← P in Q) else (let y ← P in R) ⇓ v ×w

In case the else assignment is omitted by the user, a Ø output value is produced on the
else outputs each time the condition is invoked. A Ø value received on the input ports
cause the conditional processor to produce two Ø values in all its then and else outputs
without evaluating the conditional.

Figure 1 shows example of conditional activity and the result of the enactment over
multiple-nesting level arrays. The left side example is a simple conditional without defi-
nition of the else condition. The output list contains one empty item for the value that
did not pass the condition in the then branch and the elsebranch only receives Ø values.
The center example is a complete conditional with both then and else branches. The two
output arrays are complementary. This example also shows the use of two inputs. The 1
nesting level input arrays are transformed in 2 nesting levels output arrays by the iteration
strategy applied between the inputs. The right side example is a complex example with
the mixed use of multiple port depth values, iteration strategy and multiple output ports.

depth=0
y

depth=0
x

 { , , , 11} }

{ 1, !1 } { 3, !3, 11, !11}

{ { 3, !3, , !11},

out1 = x;
= x;out1

then
if

else

double average = (x.get(0) + x.get(1)) / 2.0;
(average > y)

depth=0x

depth=0 depth=0
out (then) out (else)

{ , { 1, 3 } }
{ { !1, 3 }, }

depth=1 depth=0

out2
out2

= y;
= y;

out2 (then)
out2 (else)

{ , , }

(x*y<10)if
then out = y

= !youtelse

 { 3, !3, 11, } }
{ { , , !11, },

{ { !1, 3 }, { 1, 3} }

x
depth=1

{ 1, 1 }

y
depth=0

= xout
(x<10)

then
if

{1, 11, !1}

{1, , !1}
out1 (else)out1 (then)

out (then) out (else)

{ , 1} {1, }

Figure 1: Three conditional examples.

With partial (and complementary) arrays produced by conditionals, two additional list
manipulation activities become useful as exemplified in figure 2:

• The filter activity is a single input / single output ports activity that filters a nested
array structure such that all empty items are removed from the array. This activity
is useful to discard all results that have not passed the condition, if the indexing of
resulting items does not need to be preserved. As a consequence, the items in the
structure will be re-indexed. It is to be noted that this activity introduces a partial
synchronization barrier: an item in an array cannot be re-indexed until all preceding

9

Gwendia ANR-06-MDCA-009

items have been computed and determined as empty or not. The filtering operation
can create unbalanced lists in terms of size.

• The merge activity is a two input ports / one output port activity that merges the
content of two complementary lists with the same structure into a single list. It
can be used to merge the lists resulting from the then and the else branch of the
conditional for instance. If the list structures differ or the lists are not complementary
(an item at a given index is non empty in both lists) the merge activity raises an
exception.

{ { 3, !3, !11},
{ 3, !11 } }

filter

{1, 11, !1}

merge

{ , 11, }{1, , !1}
{ { 3, !3, , !11},

{ 3, , !11, } }

Figure 2: Filtering and merging lists with empty items.

2.3.3 Loops

A loop represents an array-compliant while kind of structure. A loop is composed by:

• An expression used as stop condition.

• One or more input ports. Loop input ports have a particular dual structure: they
are composed of an outer part, receiving the loop initialization value from the outer
part of the workflow, and an inner part, receiving the values that loop back to the
activity after one or more iteration of the loop.

• As many output ports as there are input ports. Each output port is bound to one
input port as it will receive the values sent to the corresponding input port. Each
output port also has a dual structure: the outer part will only receive a value when
the loop condition become false (hence the loop stops iterating) while the inner part
will receive iteratively all values received either on the initialization (outer) or the
looping (inner) part of the corresponding input port.

The inner input port from a loop can only receive a link that is connecting from the inner
output port (i.e. a loop has to exist). In addition, a loop activity as a specific indexing
scheme on its inner port which increases the nesting level of input arrays by one: for each
initialization value causing the activity to fire, a sub-array is created that will hold all
the values generated by this initialization while the loop iterates. A Ø value received on
the input ports cause a Ø value to be produced on the corresponding outer port without
evaluation of the condition.

Figure 3 illustrates a simple loop and the data flowing through each port. This loops
receives an array with two values (1 and 2) as initialization. As the condition passes for

10

Gwendia ANR-06-MDCA-009

the first value, it is transferred to the inner part of the output port, causing a 2 nesting
levels array to be created. The second initialization value also passes the condition and is
transferred to a second 2 nesting levels sub-array. The first value will cause 2 iterations of
the loop before the stop condition is met while the second value will only cause 1 iteration.
As a consequence, the inner array as two sub-arrays with different lengths. The outer part
of the output port only receives the stop condition values. The array transferred on the
output port has the same nesting level as the input since both input and output ports
have depth 0.

depth=0

depth=0
x

{1, 2}

{3, 3}

(x<3)
x_out = x

while

x_out

{ { 2, 3 }, { 3 } }

x++

(associated to x)
{ { 1, 2 }, { 2 } }

Figure 3: Simple loop example.

2.3.4 Iterations

A for kind of control structure has exactly the same structure as the loop structure. In the
for case, the number of iterations is the same for all initialization value. Consequently, the
inner sub-arrays will be of equal length. Figure 4 illustrates a simple for loop examples:

depth=0
x

for (i = 1; i < 3; i++)

{1, 2}

{3, 4}

x_out = x

depth=0

x_out

{ { 2, 3 }, { 3, 4 } }

x++

(associated to x)
{ { 1, 2 }, { 2, 3 } }

Figure 4: Simple iteration example.

2.3.5 Complete example

Figure 5 illustrates a complete example including a loop, a conditional and a merge activity.

3 Thoughts on iteration strategies extensibility

Many specific iteration strategies could be added to the language. For example, a symmet-
ric cross-product would make sense when processing a pair of input data (ai, bj) produces
the same result as processing the opposite pair (aj , bi). In that case, the iteration strategy

11

Gwendia ANR-06-MDCA-009

while

{!1, 2}

(abs(x)<3)
x_out = x

{!3, 3}

merge

x_out
depth=0

depth=0
x

if
then
else

(x >= 0)
out = x
out = x

{ {}, { 3 } }

{{!2,!3},{3}}

(associated to x)

then else

x!!

{ { !1, !2 }, { 2 } }

{ { !1, !2 }, {} }

{ { !2, !3 }, {} }

x++

Figure 5: Complete example with loop, conditional, and array merging activities.

should only match once and fire the activity once for both pairs. It is difficult to anticipate
and cover any application need. Therefore, enabling user-defined iteration strategies will
be required in the long term.

A new iteration strategy can almost be implemented through a specific beanshell pro-
cessor: a beanshell with two inputs connected through a cross product, and two ouputs,
will fire for each possible pair of input data. If the beanshell code filters out some of
the pairs, returning a pair only if it matches according to the semantics defined by the
customized iteration strategy, and returning Ø otherwise, the beanshell indeed defines an
iteration strategy. Its outputs can be connected to a subsequent processor with a neutral
iteration strategy (i.e. a dot product firing for all input pairs received).

However, implementing an iteration strategy, such as the symmetric cross-product,
asynchronously is only possible if the processor is able to manipulate the indices of the
data items manipulated: the processor needs to be aware of the indices i and j of the pair
(ai, bj) and to compute an index k as a function of i and j for the resulting data item.
Therefore, an iteration strategy processors needs to be an extended kind of beanshell with
the ability to access the input and output indices of the data items manipulated (there
are normally hidden to the workflow engine).

In addition, iteration strategies defined as individual processor may be cumbersome
if they appear many time in one or several workflow: the processor needs to be repeated
each time it is used. Consequently, a repository of iteration strategy specific-processor
is needed to define these strategies only once and reuse them as much as needed. To be
complete, a workflow file should contain the code for any customized iteration strategy it
uses.

Instead of beanshells, the iteration strategies could be implemented as java classes
dynamically loaded into the workflow engine code. In that case however, including these
strategies in the workflow files is more difficult.

References

[1] Daniele Turi, Paolo Missier, Carole Goble, David de Roure, and Tom Oinn. Taverna
Workflows: Syntax and Semantics. In IEEE International Conference on e-Science
and Grid Computing (eScience’07), pages 441–448, Bangalore, India, December 2007.

12

	darkblue Motivation and goals
	darkblue Data-driven parallel execution
	darkblue Array programming
	darkblue Motivations for a new scientific workflow language

	darkblue Language structures
	darkblue Data
	darkblue Scalars
	darkblue Data structures and arrays
	darkblue Loose typing option

	darkblue Workflows
	darkblue Activities
	darkblue Activity port depths
	darkblue Data links
	darkblue Control links
	darkblue Iteration strategies

	darkblue Control structures
	darkblue Beanshell processors
	darkblue Conditionals
	darkblue Loops
	darkblue Iterations
	darkblue Complete example

	darkblue Thoughts on iteration strategies extensibility

