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Abstract. We recently introduced a continuous state space parametric
model of spatio-temporal transformations and an algorithm, based on
Kalman filtering, to represent motion in an image sequence describing a
periodic phenomena. One advantage of this method is to simultaneously
take into account all the sequence frames to robustly estimate the pa-
rameters of a unique spatial and periodic-temporal model. However, in
3D+time, a large number of parameters is required. In this paper, we
propose a criterion based on motion energy to locally adapt the trajec-
tory model and thus the temporal complexity of the model. The influence
of the model order is illustrated on true 2D+time Magnetic Resonance
Images (MRI) of the heart in order to motivate the proposed adaptative
criteria. Quantitative results of the proposed adapted spatio-temporal
motion model are given on synthetic 2D+time MRI sequences. Prelim-
inary experiments show a significant impact notably regarding the pa-
rameter saving while preserving the accuracy of the motion estimates.

1 Introduction

Cardiac motion estimation and modeling is particularly helpful for myocardial
function analysis. The last two decades are marked by an important progress
of image acquisition devices making possible to better explore the dynamics
of moving organs. Magnetic Resonance Imaging (MRI) and Multiple Detector
Computed Tomography (MDCT) provide meaningful information about the 3D
anatomy and contractile function of the heart. 3D+time segmentation and mo-
tion estimation from cardiac images are recognized as a difficult pre-requisite
tasks for quantitative analysis of cardiac function. Most of the published works
does not explicitly take into account the time dimension and proceeds iteratively
from one time point to the next. This results in inconsistent material point tra-
jectories. However, it is clear, especially for cardiac motion recovery purpose,
that introducing some realistic temporal constraints will greatly improve the
estimated motion pattern [1]. In cardiac motion analysis, some recent works
are extension of 2D/3D image registration methods to 2D+time/3D+time [2, 3].
Time axis is here considered as a supplementary axis which is not qualitatively



different from the other spatial axes. In a similar way, in [4], the tracking of the
left ventricle is performed with a 4D B-Spline model whose knots fit extracted
features from Tagged MRI. In a previous paper [5], we introduced a framework
based on state-space formulation and Kalman filtering by imposing a tempo-
ral consistency of the estimated motion over the whole image sequence and the
whole image space. The periodicity and continuity of the motion is therefore
insured but one of the main drawbacks of the method might be the number of
involved parameters for motion description. This particular point makes diffi-
cult to process a full 3D+time sequence with standard computers. In this paper,
we propose to locally adapt the complexity of the trajectories according to the
magnitude of the underlying motion in order to focus on the description of the
motion in regions which contain the meaningful information. The paper is orga-
nized as follows: in the method section, we briefly recall the model and algorithm
proposed in [5] and introduce a criteria and a new method to locally adapt the
complexity of the motion description. The next section illustrates the influence
of the harmonic decomposition order with real 2D+time MRI and give quan-
titative results about parameters profit and accuracy of the motion estimation
with synthetic 2D+time MRI sequences.

2 Method

Our method relies on the temporal modeling of free form deformations with a
harmonic decomposition of the control point trajectories. After briefly recalling
the principle, we focus on the proposal of this paper which consists in adapting
the decomposition order of the model according to relevant information present
in the image sequence.

2.1 Spatio-Temporal Model

Let consider a periodized image sequence I = {Ij , j = 0..J} (Fig. 1) where
j ∈ Z

+ refers to the discrete time axis and where each image Ij belongs to R
d

and corresponds to the discrete time point tj . This sequence results from the
observation of cardiac motion with tomographic imaging modalities like cardiac
cine-MRI or MDCT.

A Lagragian formulation of the motion consists in describing the path of each
material point P during the motion. The time-dependent coordinates x(t) of P
is expressed according to the reference coordinates x0 at reference time t0. The
spatio-temporal transformation ϕ is a one to one continuous mapping defined
by: R

d ×R → R
d ; x(t) = ϕ(x0, t). In our work, the non-rigid continuous spatial

transformation ϕ is modeled by Free Form Deformations (FFD) [6, 7]. It warps
an image by moving an underlying set of control points (CP) distributed over a
regular grid. Instead of considering the displacement of each CP, we are looking
for the whole trajectories they have to follow to fully describe the periodical
spatio-temporal cardiac motion under study:



Fig. 1. Periodization of the image sequence to provide a pseudo infinite set of obser-
vations

ϕ(x0, t) = x0 + u(x0, t)

ϕ(x0, t) = x0 +
∑

k∈Kinf (x0)

ξk(t)βk(x0). (1)

The displacement u(x0, t) of point P at time t is modeled by a linear combi-
nation of a tensor product of interpolating functions βk (cubic B-Spline functions
in our case) and the position ξk(t) at time t of the CPs. k stands for CP index
and Kinf is the subset of the CPs which influence the motion of P. Thus, the
transformation is continuous, smooth and semi-local.

ξk(t) is a time dependent function representing the d-dimensional path of
CP with index k. In [5], we proposed to express it as a finite sum of periodic
harmonic functions (or truncated Fourier series):

Sξk
(t) = a0

k +

N
∑

n=1

[an
k cos(2πnft) + bn

k sin(2πnft)] , (2)

where f is the frequency of the motion to be estimated and N the decom-
position order. The truncation to the first N coefficients of the decomposition is
equivalent to apply a low-pass filter to the trajectory signal. Small values of N

result in very smooth CP trajectories while higher values increase the complex-
ity of the trajectories. The periodicity property of such a decomposition is very
interesting for the beating heart analysis. Furthermore, velocity and acceleration
can be directly derived and exploited.



2.2 Parameters Estimation

Spatio-temporal motion estimation for the whole image sequence is performed
by estimating the coefficients of the Fourier series for all the CPs (size = K).
All the parameters are considered as stochastic signals and stored into the state
vector X (eq.(3)) of a state-space formulation (eq.(4)):

Xt =
[

a0
0 a1

0 ... aN
0 b1

0 ... bN
0 | ... | a0

K−1 a1
K−1 ... aN

K−1 b1
K−1 ... bN

K−1

]

. (3)

Xj+1 = AjXj + Γvj

Zj = CjXj + wj (4)

The state vector is not directly measurable but it can be recursively estimated
according to a set of successive measurements Zj . Kalman filter [8] allows to take
into account the whole sequence in a recursive way so that we only need results
of a previous estimation to perform the next Kalman filter iteration. The image
sequence I is periodized ( I|I|I|I..., Fig.(1)) to give a pseudo infinite set of
observations. At each innovation step, the new measurement Zj is computed
from non rigid FFD based registration between image Ij and reference image
I0. The Kalman filter provides a useful prediction of the state to initialize the
registration at each time point.
The registration similarity criterion must be chosen according to the expected
relation between the images to be registered. In the monomodal case, we can
assume that the photometric level of material points remains almost constant
during motion. The sum of squared differences (SSD) measure has therefore been
chosen:

SSDj(I0, Ij , ξ(tj)) =
∑

x∈Ω

(I0(x0) − Ij(ϕ(x0, tj)))
2 (5)

with Ω the image overlapping domain. Optimization of the criterion is per-
formed through a gradient descent algorithm. The obtained value for ξ(tj) stands
for the new measurement Zj to be introduced in the Kalman filter.

The registration algorithm relies on two multi-level pyramidal representa-
tions. A first multiresolution pyramid P1 decomposes the successive observations
within the image sequence I, applying a low-pass Gaussian filter to each image
Ik independently and then, decimating the number of pixels (or voxels). The sec-
ond pyramid P2 allows for the multiscale decomposition of the spatio-temporal
FFD transformation [9, 10, 3] (see [5] for more details).

2.3 Harmonic order adaptation

The total number of parameters increases with the number of CPs and with the
order of decomposition of their trajectories. Let consider a R

d space, a warping



grid of size M and a harmonic decomposition order N . The transformation is
thus defined by (2N + 1) × d × Md parameters.
We observed that for meaningful areas in the image sequence, a decomposition
order of N = 4 (i.e. 9 parameters to describe a CP trajectory path for d = 2)
is largely sufficient to recover the spatio-temporal motion. The model described
in section 2.1 implies that the number of parameters is the same for each CP
whatever the region it influences. Indeed, the CPs outside of the heart generally
experience a very short trajectory. An adaptation of the harmonic decomposition
would avoid spending too much time for meaningless regions of the image and,
at the same time, reduce the parameter number of the spatio-temporal model.
We propose to estimate the energy associated to the trajectory of CP with index
k through the Parseval formula:

Ek =
∣

∣a0
k

∣

∣

2
+

1

2

N
∑

n=1

(|an
k |2 + |bn

k |2) (6)

The motion estimation starts with N = 0 so that a0
k is the only parameter

to be estimated for each CP. This value corresponds to the mean position of the
kth CP all over the spatio-temporal motion. The overall algorithm (algorithm 1)
consists in alternatively increasing the transformation scale and the image reso-
lution. The algorithm starts with the lower scale of the transformation pyramid
and the lower image resolution. After convergence of the Kalman filter at this
step, a higher level of the transformation is considered. The previous state vector,
which contains the estimated parameters, is used to initialize the state vector
corresponding to the current transformation scale. The projection operation is
performed according to the following scheme:

Xl+1 =
(

↑2 Xl
)

∗ H, (7)

where ↑2 stands for the upsampling operation, l the pyramid level and where,

H =
1√
2

[

1

8

1

2

3

4

1

2

1

8

]

, (8)

is called the mirror filter [11] whose coefficients depend on the interpolating
function β.
The harmonic adaptation step occurs just before the transformation level change.
To this aim, the motion energy of each CP is computed according to Eq(6). If
Ek > µ where µ is a fixed threshold, the harmonic order Nk is incremented. Un-
til now, µ is experimentaly fixed, but some decision criteria are being investigated



Data: I, configuration file and input parameters
Initializations (P1 computation, Image Gradient, Nk = 0);
while CurrentLevel < TotalCurrentLevel do

Initialize Kalman Filter;
while KalmanIteration < MaxKalmanIteration do

Prediction of the State at time k+1;
Initialize registration parameters according to the prediction;
Perform Gradient Descent Search;
Filtering step;
KalmanIteration = KalmanIteration + 1;

end

if Increase transformation level then
Locally adapt the decomposition order Nk;
Project parameters onto next transformation level;
Increase P2 level;
CurrentLevel = CurrentLevel + 1;

else
Increase P1 level;
CurrentLevel = CurrentLevel + 1;

end

end

Result: Spatio-temporal model parameters;
.

Algorithm 1: Flowchart of the estimation/prediction algorithm with local
adaptation of the trajectory complexity

3 Results

For all the tests, the level number of both the image pyramid and the transfor-
mation pyramid are set to 4. The number of cycles used for Kalman convergence
is fixed to 7 for each level of the pyramids (In general, 4 or 5 cycles are sufficient).

3.1 Harmonic decomposition order influence with true 2D+time

MRI sequences

The ability to capture coarse motion from a reduced spatio-temporal model order
will be studied on a true patient sequence. This sequence has been acquired
using a cine MRI acquisition (1.5T Siemens Magnetom Vision scanner, Helsinki
Medical imaging Center) and is composed of 28 time points covering the cardiac
cycle (Fig 2, first row). A short axis slice was selected in the middle part of the
heart, between the base and the apex. Image dimensions were 160× 160, spatial
resolution was 1mm × 1mm and temporal resolution was 30ms.
Figure 2 shows the values of Ek (Eq.(6)) at different transformation scales (FFD
grid size 5 × 5, 7 × 7, 11 × 11, 19 × 19, respectively). Only the first term a0

k

of the Fourier series (i.e. model order N = 0) is considered for all CPs. This



corresponds to the mean CP position over the full cycle. It is clear on this figure
that interesting regions, where motion occurs, are well detected even at order
N = 0.

(a) (b) (c) (d)

Fig. 2. The first row shows four images from the true MRI sequence during systole.
The second rows illustrates the energy Ek at decomposition order N = 0 (mean term)
for all the CPs. The intensity value in images a-b-c-d) respectively corresponds to the
energy value at different scales of the transformation (one pixel per CP). The FFD grid
size is 5 × 5, 7 × 7, 11 × 11, 19 × 19, respectively. The colorbar is expressed in mm

2.

Figure 3 illustrates Ek maps for a fixed transformation scale according to the
decomposition order. We experimentally observed that order N = 4 is enough to
describe the most complex trajectories in the sequence. This value corresponds
to 9 parameters to describe trajectories in each direction and for each CP. It is
a good trade-off between the smoothness of the estimated trajectories and the
number of images in the processed sequences.

3.2 Quantitative results with synthetic 2D+time MRI sequences

Algorithm 1 was applied on a synthetic 2D sequence of a realistic beating heart.
This sequence was generated from an actual 2D MRI short axis slice. The syn-
thetic motion has been computed from a spatio-temporal analytical model de-
scribed in [12]. Dimensions of the images are 160×160 pixels and spatial resolu-
tions are 1mm×1mm. Gaussian noise (O mean, σ = 5 square intensity unit) has
been independently added to each image of the generated sequence. The theoret-
ical spatio-temporal motion field is used as a reference to assess the performance



(a) (b)

(c) (d)

Fig. 3. Illustration of the energy Ek with model order N = 0 (a), N = 1 (b), N = 2
(c) and N = 4 (d) for all the CPs and a transformation scale 11 × 11.

of the proposed algorithm in terms of mean quadratic (MQE) and mean an-
gular errors (MAE) over the whole sequence. Because of the high number of
involved parameters, standard computer architectures (with 1Gb of RAM) fail
to converge when N is high and constant for all the CPs. In that case, there
is a trade-off to find between the final FFD grid resolution (spatial resolution)
and the decomposition order (temporal resolution). This problem is overcome
with the proposed method. The Table 1 quantitatively compares our method,
the case where N = 4 for all CPs of a 19 × 19 FFD grid (computed on a SGI,
64GB RAM) and an acceptable configuration for a standard computer architec-
ture (Grid Size = 19 × 19, N = 2). Results show that the parameter number
is significantly reduced with the proposed method. This important properties
allow to reach the final transformation scale while considering a decomposition
order N = 4 for some of the crucial points for the final spatio-temporal motion
model. A cartography for N is given in Fig 4.a). The accuracy is even increased
(Tab. 1), especially for meaningful areas of the processed sequence as illustrated
in Fig 4.b) c). This is because parameter reduction results in a low-pass filtering
of the background noise.



Table 1. MQE (in mm) and MAE (in degree) between the reference and the estimated
motions fields. All the 22 time-points have been considered to compute the errors. The
last column gives the number of parameters required to obtain the results.

Quadratic error Angular Error Number Of Parameters

Adaptative decomposition 0.24 ± 0.28 3.7 ± 8.0 1 830
Grid Size: 19 × 19; N = 4 0.25 ± 0.29 3.8 ± 8.7 6 498
Grid Size: 19 × 19; N = 2 0.29 ± 0.29 4.1 ± 8.6 3 610

(a) (b) (c)

Fig. 4. Cartography of the harmonic order used for the final motion model a). Dark
pixels correspond to small N values and bright pixels correspond to high values. b) and
c) display the MQE map (mm) for reference and estimated motion fields, respectively.
b) corresponds to the configuration where the FFD grid size is 19 × 19 and N = 4. c)
corresponds to the map associated to the proposed algorithm.

4 Conclusion

We presented a method to adapt the complexity of a spatio-temporal motion
model to the content of the image sequence. The parameters of a continuous
state space parametric model are estimated by an algorithm, based on Kalman
filtering from an image sequence describing a periodic phenomena. All the se-
quence frames are taken into account to infer the spatio-temporal model. Re-
duction of the parameter number using the proposed approach allows to obtain
a better accuracy. Complementary tests have to be conducted to evaluate the
influence of other method’s parameters. As applied to cardiac imaging, such an
approach allows for the direct determination of motion parameters that can be
exploited for clinical interpretation and diagnosis, helping for instance in the
detection of contraction abnormalities. The parameters profit with the proposed
scheme makes now possible to conduct tests with 3D image sequences.
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